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Motivation: Reducing Vertical Emittance

Vertical emittance of ideal, flat accelerator is very small (for ALS of
order of 0.5 pm) — correcting coupling errors can help to significantly

iIncrease brightness, luminosity, dynamic and momentum aperture,
etc.

«  Simplest coupling errors are tilts of quadrupoles and offsets in
sextupoles
— These errors cause:
1. Global coupling
2.  Local coupling
3.  Vertical dispersion

* To optimize performance, all three effects have to be corrected

— Methods include orbit manipulation, skew quadrupoles, moving of
sextupoles, ...

« Most successful strategy at light sources: Do not target the three
quantities individually, instead use combined approach
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Reminder: Quantum excitation

Particles, which change their energy in a region of dispersion due to the
emission of a photon, will see an increase of their transverse oscillation
amplitude. The balance of quantum excitation and radiation damping
gives the equilibrium emittances.
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For an ideal, flat accelerator the vertical dispersion is zero, i.e. there is an
extremely small vertical emittance. In an accelerator with errors, coupling
and spurious vertical dispersion increase the vertical emittance.
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Experiments requiring small vertical emittance

Synchrotron light sources: High brightness (photon

flux/sizes/divergences) enables high resolution experiments and
provides partial transverse coherence

electron
orbit
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Colliders: Particle physics experiments require high statistics — high
luminosity — small vertical beamsize at IP
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m Coupled Transfer Matrix

Skew quadrupole field errors generate betatron coupling
between horizontal and vertical equations of motion.

4x4 transfer matrix for a quadrupole rotated by a small

angle ¢
[ x) (1 0 0 0Y)x)
x | -k 1 -2kp O X
yl | 0 0 1 o0ofy
ky’) final K_ 2kp O k 1/ ky’)initial
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I:IE Local/Global Coupling, Vertical Dispersion

* Coupled (Hills) equations of motion :

x'-Kx=-Ky V'+Ky=—-K x
1 OB, 1 0B

Bp oOx ' Bp ox

« Analogy with mechanical coupled harmonic oscillators (with springs)

s

« With K=

NN

B

mi + (k; +k)x —ky =
my + (k, +k)y —kx =
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I:IE Resonance Description of Global Coupling

» Global coupling is typically described using a resonance
theory

 Difference coupling resonance

i —
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¢

S
Z:ﬂx(s)_ﬂy(s)_EAr Ar:(Vx_Vy_N)
— Vertical emittance near difference resonance:

2
&, | x|

e kP A2 /2

X

K is resonance strength, A, is distance from resonance.
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m Normal mode Analysis: C matrix

« On Monday, we only discussed the uncoupled case (and mostly
looked at 2x2 matrices). If there are coupling errors, one can do a so-
called normal mode analysis (diagonalizing matrix)

« Start with 4x4, one-turn matrix R,...,;n, Which maps the 4 transverse
coordinates x=(x,x",y,y ). Normal mode form:

R

one—turn

- . . (A0
= VUV, normal mode matrix U = 0o B/

, cos@, +a, sin g, [, s g
with A = . . ,
—y,sin ¢a COS ¢a —a, sin ¢a

V isof the form (Edwards + Teng)

C
~C* A
with 7> + HGH =1.The magnitude of Cisa measure of local coupling.
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Local Coupling

Often the normalized matrix C is used :

)
1)

C=G_CG,',where G, = “f“

— P
\ P J
« Locally there is torsion in addition to the global invariant vertical
emittance, resulting in a larger projected emittance:

A

{ 31:

fu

u\

« Again driving terms scale like the sqrt of the product of the beta
functions at the location of the skew errors.
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ALS Example: Local Coupling

Ly |
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tilt [degree]

-40 ! . .
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s [m]
« Even for very well corrected global coupling, local coupling can still be

significant (as shown here by local tilt angles).
* Projected emittance can change significantly around ring.
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m Vertical Dispersion

 There are two main terms that can create vertical dispersion:

1

Py

— | Dipole errors| (steering magnets, misalignments, ...) or intentional
vertical bending magnets

— |Skew quadrupole fields at the location of horizontal dispersion
(due to quadrupole tilts, or vertical offsets in sextupoles)

K, = jds K.n. \/,B/yei%

¢, s
= ,(9) = (v, =)

Vertical dispersion directly causes increase of the vertical emittance
by quantum excitation

1K,

S

1, K7, =
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Correction Techniques

« One can correct the three coupling effects using skew quadrupoles,
vertical offsets (movers or orbit bumps) in sextupoles, steering
magnets, ...

« The corrections can either target global quantities, local quantities at
individual points of the ring, or local quantities everywhere.
— Distribute in difference coupling resonance phase

1 i, D, (s) s
K:andslg,/ﬂxﬁye =2 = = (1, (9) = 4, ()=~ (v, =V, =)

— In sum coupling resonance phase

iﬂj dsK .| 8.5, e'’s (D2S7(ZS) =, () + ,Uy(S))—%(Vx +v, —M)
— And in n, phase
2 @=L, -m
=u ()=, -
27 &« cC ’

Need some skew quadrupoles at non-zero n,
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Unsuccessful Correction Attempts ... for ALS

. Originally, we tried three different approaches at ALS:
1. Coupling correction with skew quad chains (single resonance)

2. Dispersion correction using orbit correctors (TBA,
chromaticity)

3. Dispersion correction using skew quadrupoles without
minimizing the coupling simultaneously

izes vs. SQSF1 settings
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m Separated approaches can work ...

* In case of FODO lattices, or if there are no user
requirements to keep orbit fixed, the separated approach

of coupling correction can work well (i.e. in colliders):

— FODO lattice is simple and allows dispersion correction via orbit
correction/bumps.

— In addition one can often minimize the global coupling with only four
orthogonal skew (families) mostly independently from dispersion.

— The local coupling in most colliders is only relevant at the interaction
point and can be compensated there with a few local skew quadrupoles.

 However, usually the integrated approach is better and

next part of lecture will focus on it:

— Targeting local and global coupling, as well as vertical dispersion
simultaneously

— Method has proven extremely powerful at light sources.
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m Integrated coupling correction

Use accelerator toolbox, Matlab and LOCO for simulations (see
lecture by James on LOCO)

«  Simulate many random skew error seeds

- Try to find effective skew corrector distributions and to
optimize correction technique in simulation, using two
correction approaches:

1. Response Matrix fitting — ‘deterministic’ , small number
of iterations

2. Direct minimization (nelder-simplex, ...) — easy to do on
the model, would be difficult on real machine

Surprisingly both approaches gave about the same performance
In the model calculations

— For response matrix analysis you have to optimize several
parameters of the code as well (weight of dispersion,
number of SVs, use of effective model/full model ...)

lllllll I
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J LOCO:_S:\Private\XRay\LOCOWMar24_03\set2\fixedP\xraylocooutput.mat i _lof x|
n File Inputs - Export to Workspace - Help
12, /D.OF = 21911029305
Model Beta Function (v, =0.2976) Model-Measurec+EnergyShifts Response Matrix
u 43
2 Il 3
i

. . . . S
e
['he orbit response matrix is defined as 3
&
3
—_ £ 10
9 :
X :
p— 0
0 50 100 150
—_ BPM Position [meters]
Plot
9 StatFrom |10 v SelectaPlot Type lteration # SelectaPlot Type.
y settersions [T =] " | [ Fancion Verioa 1[0 =] [Fesnores MetmPiots (refickformoropy ]

The parameters in a computer model of a storage ring are varied to minimize the »°
deviation between the model and meaSlﬂlrled2 orbit response matrices (M, and M,.,s).
(M'r‘neas _Mmo € )
2 1y 1 — 2
X = Z 2 — ZEk
i,J

O; k=i,j

1

The o; are the measured noise levels for the BPMs; E is the error vector.

The »° minimization is achieved by iteratively solving the linear equation

OE Adjust fit parameters (like gradients,
E"=E,+—%AK, =0 ...) until calculated response matrix
5Kl matches measured one
OFE OFE :
- E, =—XAK, —* = J,, = Jacobian
oK, oK,

For the changes in the model parameterat minimize //E//ZZZZ.

Gauss-Newton minimization.
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m Weight of dispersion in LOCO fit

» The relative contribution of vertical
dispersion and Coupling to the < 10°"° Optimization of dispersion weight
vertical emittance depends on the
particular lattice (and the particular
error distribution).

« Therefore the optimum weight for | \M_ ) /

£, [m rad]
N I
\

the dispersion in the LOCO fit has to 0 5 10 BT 20
be determined (experimentally or in g X 10"
simulations). = of

- The larger the weight factor, the T 4 \\\‘\
better the vertical dispersion gets = o . -
corrected, but eventually the oL . _ _ 1
coupling ‘explodes’. dispersion weight

« Set weight to optimum somewhat
below that point.
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Finding an Effective Skew Quadrupole Set

« To find an effective skew quadrupole
distribution, we used several correction =

methods, first in simulations — best
method was orbit response matrix

10

fitting (using LOCO) °
* Predictive method, can be easily used 0

on real machine

 |ssues are:

— Cover set of phases relative to
dominant coupling resonance(s)

— Magnets should be distributed
around the rin
excessive local coupling/vertical

in order to avoid

dispersion
— Need different values of °
dispersion/beta function to be g

effective both for coupling and
vertical dispersion correction

» Setof 12 skew quadrupoles was
reasonably efficient
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MALS example: Emittance Reduction

100

* Achieved an emittance reduction from 150 w0
pm (routine ALS operation) to about 4 pm
(pictures on the right illustrate size "
reduction for insertion device straights).

» Touschek lifetime requires to not make full

0

Y [pm]

-40

use of the possibility: Nowadays in top-off
we operate at 20-40 pm.

+ 4 pmwas a world record in 2003 and about " 0 T aim 200
the NLC damping ring design value

80

» Correspondingly the brightness would "
increase by factor 30 (for hard x-rays — ©

20

because of diffraction limit less for soft x- ¢
rays) Y
» Recently repeated with more skew
quadrupoles, now reach values below 1 o
pm, close to the ‘quantum limit'. oo 500 500 40D 2 O 20 40 00 a0 o

X [pm]
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ALS correction example: Sizes, tilt, dispersion

ALS Dispersiop
! /

0.3

0.25F

0 50 100 150 200

1 1 I -0.05 I 1 1
0 50 100 150 200 0 50 100 150 200
s [m] s—position [m]

* In this example vertical beamsize was reduced by factor of more than 4
(emittance by factor 20)

» Spurious vertical dispersion reduced from 7 mm rms to below 3 mm rms

« Tilt of phase space reduced significantly everywhere
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I:IE Ways to Increase the Vertical Emittance ...

* Low energy third generation light sources
usually increase the vertical emittance
intentionally to achieve acceptable lifetime.

 Historically at the ALS we used a family of skew
guadrupoles to excite linear coupling resonance.

* |In 2003 we switched to a mode where we
correct the coupling and dispersion as well as
possible and then blow up the vertical emittance
using a global vertical dispersion wave.

 Method has many advantages (beamsize
stability, dynamic momentum aperture, ...)
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Vertical Dispersion Wave

b>.30 _J KJ J M \ /k i 18—'(?.03 —0.;)2 —0.61 (I) 0.;331 v (vx_v(:;()2 O.IOS 0.64 0.65 0.06
\ | 12-20 skew quadrupoles are used
r such, as to generate a global vertical
CoRoRo R o e ® 0 dispersion wave, without exciting
o , , nearby coupling resonances
I _ I ] I Vertical emittance is directly
AL " I generated by quantum excitation
| Local emittance ratio around the ring
-oo+f W saSF | | | | is fairly constant, local tilt angles are
~0.057, 5 9 Skewazd# 17 21 Sma”

Office of Science
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Vertical Beamsize Stabillity

« The stability of the (vertical) beamsize is important for users (not all
effects of varying beamsize can be normalized out)

— Main issues affecting the beamsize are residual tuneshifts (after
feedforward compensation) when scanning undulators or skew
errors inside those undulators (especially EPUs)

- Using dispersion wave instead of coupling resonance to increase
vertical emittance improves beamsize stability

January 8-11, 2003

January 29-February 1, 2003

‘ 80
€ 60 NJ i  E 60
= e L
40+ : i © 40 iy
0 20 4I0 6‘0 8‘0 0 2‘0 4‘0 60 80
~ 004 “J'WN 1 . 004
o
® © "‘J‘J
g My § LA
7>0.02¢ w | 1 "’>0.021JNJ‘A‘1} \ MN‘J ]
3 4
0 L 1 I 1 0 I I 1 1
0 20 40 60 80 0 20 40 60 80
time [h] time [h]
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Impact of Coupling Errors on Dynamic

ALS Frequency map (NAFF): nux=16.25,nuy=9.20

y position [mm]

4 6 8 10
X position [mm] (injection straight)

12

14 16

ALS Frequency map (NAFF): nux=16.25, nuy=9.20

S>> 9121

9.02
16.14

A

16.16 16.18 16.2
\
X
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Aperture

Coupling errors (not just linear coupling)
have strong impact on amplitude at high
amplitude

Excitation strength of ‘high’ order
resonances, that usually dominate
dynamic aperture, depends on skew
errors

Example on the left shows dynamic
aperture and frequency map of ALS,
revealing many high order coupling
resonances close to the limit of dynamic
aperture

Correction of skew errors followed by
controlled setting of emittance improves
dynamic and momentum aperture

=

Office of Science
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m Lifetime vs. Vertical Physical Aperture

10

il §§§§'
i g ! |

61 ) i i

**11111t
3t x}} |
Q§I

o ¥
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A o
T T

0 : 2 3 4 5
top scraper [mm]
» Performance (Brightness) of undulators/wigglers (both permanent magnet
and SC) depends on magnetic gap

*The vertical physical aperture at which the lifetime starts to get smaller
depends strongly on how well global and local coupling is corrected!
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I:M Different integrated method: ESRF

Meas. vertical emittance Ey from RMS beam size

EX=4.2 nm O IAX : always on

1rst dipole in cell

.\3.3 pm /1.8 pm

Well corrected |@ vimoe: 4

9: 2 dipole

Coupling 25 : 1= dipolg

Low beam |/ ad
current (20 mA) otors: |
distribution in

the Storage Ring
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ESRF: Coupling RDT

Coupling correction via Resonance Driving Terms

2%
Z J 1 /,Bwﬁwei(Aﬁbm,mq:A(f)w.y)
w v vy

Fyw = =41 = ezriaom0)
Bu | error lattice model (quad tilts, etc. fi rbit Respons .
Mati urn-by-turn BPM data) => RDTs and D\
F =(a,*f,001, @:*F1010, @,°Dy) , a,+a,=

1. Evaluate response matrix of the available skew correctors M

2. Find via SVD a corrector setting J that minimizes both RDTs and Dy

(Plots courtesy of A. Franchi)
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ESRF: Coupling RDT

Coupling correction via Resonance Driving Terms

— —
a,=0.7 (2010), 0.4 (2011)
a1 /1001
-2 . > a,;+a,=1
alflOlO meas MJc’
> Different weights on f,,,, and
a, Dy f.010 tried, best if equal.
Bul | erl = le 1 2 , rbit Re A

Matrix or turn-by-turn L PM data) => RDTs and Dy
F fi001> @1 1010, @5 DY) , a;ta,=
Evaluate response matrix of the available skew correctors N

2 Find via SVD a corrector settlng J that minimizes both RDTs and Dy
J =M F to be pseudo-inverted

(Plots courtesy of A. Franchi)
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Skew quadrupole compensation for EPUs

Beamsize variation was
solved by installing skew
correction coils for
feedforward based
compensation

Feed-forward tables were
generated analyzing multiple
orbit response matrix
measurements (and fits).
Result is an excellent
compensation.

Also identified root cause: 2-
3 micron correlated motion
of magnet modules due to
magnetic forces. Newer
devices have modified
design to reduce effect.

CFECINRen Office of Science

55

Tl

40}

35

—¢— no skew compensation coil
—— skew quadrupole FF on, n, wave

shift [mm]

For reference: Whenever an undulator moves,
about 120-150 magnets are changed to
compensate for the effect (slow+fast feed-forward,
slow+fast feedback)
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Unusual Example: Dispersion/Coupling Insertion

* Inverse FEL interaction in Wiggler/Undulator used to impose big
energy spread on small slice of bunch

« Subsequent arc provides horizontal dispersion
« Lattice Insertion transforms this into vertical separation at radiator

femtosecond
femiosecond electron bunch femtosecond x-rays
- , laser pusse \ .l
s N

Vertical spatial separation Undulator beamline

electron-photon skew quad dispersion bump

interaction in wiggler
Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996.
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ALS: Dlspersmn/Couleng Insertion

trajectory after energy loss
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Design uses 12 skew quadrupoles to generate closed vertical dispersion bump with
negligible global coupling and small local coupling at radiation

Some sextupoles are already operated deep in saturation — sextupole field gets suppressed
by reasonably strong skew quadrupole (>1% effect) — nonlinear dynamics could be
important! — No problem.

Horizontal dispersion in straights automatically generates horizontal separation in addition to
vertical separation of dispersion bump

Separation shown on the right is for 4 cm ny, 6 cm n, and 9 o energy kick

l 1 L 1
80 2 4 6
s—-position [m]

I I .
50 100 110 16 18
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m Summary

« Coupling correction is important to optimize the performance
of an accelerator.
— Direct benefits are increased brightness or increased luminosity.
— More indirect improvements are dynamic (momentum) aperture and
therefore injection efficiency and lifetime.
* There are several correction methods:

— At light sources a combined approach targeting local coupling, global
coupling and vertical dispersion simultaneously has been most
successful.

» Using orbit response matrix analysis (LOCO), emittance
ratios below 0.1% have been achieved.
— For the ALS that corresponds to a vertical emittance of below 1 pm

rad, which is within a factor of a few of the theoretical limit due to the
finite opening angle (1/y) of the synchrotron radiation!

-
Y
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ALS Lattice — Location of Skew Quadrupoles

Normal Sector M m M M
: r

S =
o~ 250 SUNOS version
325 & A

28/05/:2 17.26.13
T

1
BEM 3——-’3.
‘ ‘
l_'r'
-
wl
'8
BPM 7—4
£
X
—Y
B (m)
D (m)
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aml
BPM 2
Z BPM3

- 0.025

0.0
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Table name = TWISS

24 (by now has grown to 56) individual skew quadrupoles
(integrated in sextupoles) serve several purposes:
» global vertical emittance/dispersion control
* including minimizing local coupling angles everywhere
* local vertical dispersion bump
» correction of skew errors induced by undulators (EPUs)
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Finding an effective skew set (2)
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I:Ig Simulation Results (Momentum Aperture — Gap)

Emittance increased using vertical dispersion wave ... using excitation of coupling resonance
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» Tracking results are in good agreement with measured
effects, I.e. case with dispersion wave has less yellow and
orange areas than the one with excited coupling
resonance, indicating less sensitivity to reduced vertical
aperture
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m Other Examples: NSLS

« James was (to my knowledge)
the first to use response matrix
based fitting to correct
coupling (>20 Years ago).

* Applied it very successful at
the NSLS, achieving less than
0.1% emittance ratio. Still
close to the best emittance
ratio reached anywhere,
though the absolute vertical
emittance was somewhat
large, because of much larger
natural emittance of X-ray ring.
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m Other Examples: ESRF

* Nghiem, Nagaoka, and Tordeux carried out work at ESRF
using a method similar to LOCO (back in 1999).

— Challenge was large number of elements in ESRF, order of
magnitude is 400 correctors and 400 BPMs and similar number of
quadrupoles, sextupoles.

— Back then, could only use partial response matrix in analysis.
Averaged over several of those matrices.
« Did not fit tilt errors of individual magnets, but effective
skew distribution (enough to describe the local coupling
structure, but few enough to not get strong degeneracies)

— It was important to study precisely what singular values to keep in
inversion and which ones to neglect.

— Had to iterate with empirical correction on top of the LOCO
predicted correction — reason seems to be relatively small number
of skew quadrupoles (16).
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Other Examples: ESRF

Reached about 10 pm
emittance.

Predictions from model (tune
scan, ...) agree very well with
independent measurements.

(All plots courtesy of R.
Nagaoka ESRF/Soleil)

0034 )
MDT-26-Jan-99
a
LOOEAN o 0032
l | - MistEffective 16 — I
IS T 8- pm*r
E & Existirg 16 s.—ﬁ a0
; 5 £3
E'Lml:m ‘5 S
&) "
o = ‘s ams
3 . A e, A y--]
-~ s
— D '
g 10060 an6
>
e S —
2 | e Steeaa )
amd |12 pm*rad
1006
0 1 2 3 4 s am2
X 0 20 40 60 30
Namsberof Herations Skew Corrector Variations

m (@JENERGY C. Steier, Beam-based Diagnostics, USPAS 2019, 2019/1/21-25

Office of Science



Vertiod DR{RpeRsdqon F m |

Other Examples: ESRF

(Plots
courtesy of
R. Nagaoka)
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Other Examples:

Minimize n, and off-diagonal

response matrix:

J Figure No. 1
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