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Introduction
• Largest Driver for Beam Stability 

are usually user experiments:
– Often stability can be more 

important to synchrotron radiation
users than brightness + flux

– Stability requirements have 
evolved as experimental 
techniques have improved

– Requirements are 
beamline/experiment specific and 
more effort will be needed in 
future to optimize integrated 
systems

• But there are accelerator related 
reasons as well:
– Lattice distortion (sextupole feed-

down, dipole errors, …)
– Equipment protection (mis-steer)
– Beam-beam overlap

3

David Shapiro, ALS
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• All of those requirements either directly 
specify or relate back into stability 
requirements
• beam position + angle, beamsize + 

emittance, beam energy, beam 
energy spread, … 

• For current SR sources, this means 
submicron orbit stability (for MBAs 
in both planes)

• However, requirements are experiment 
specific and MBAs bring some 
changes

Typical requirements of 3rd

generation SR user experiments 
(~2010):

Measurement parameter Stability Requirement

Intensity variation DI/I <<1% of normalized I

Position and angle <2-5% of beam s and s’

Energy resolution DE/E <10-4

Timing jitter <10% of critical time scale

Data acquisition rate 10-3 – 105 Hz

Requirements on 3rd gen SR Rings
4
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Similar tables, see: Hettel, Boege, …
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Why orbit / position need to be constant

• Without slits, beam motion will translate to motion of photon beam 
on sample, i.e. different sample areas are measured

• Similarly for monochromator without slits vertical beam motion 
translates into photon energy shift

• With slits, the effects get smaller and smaller with smaller slit size
– There are smaller 2nd order effects because of beam profile and nonzero slit size

– However, the smaller the slit the smaller the transmission and the larger the 
intensity fluctuations

– Effects of slit alignment and motion also become important
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Requirements are beamline sensitive: Front to end simulation 
and optimization needed. Includes integrated control system 
access

Examples of sensitive Beamlines
• ALS micro-focusing

– Environmental samples (�dirt�)

– Very heterogenous
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• ALS STXM
– Zone-plate imaging 

using coherent fraction 
of beam
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• ALS magnetic 
spectroscopy

– Measuring very 
small dichroism 
effects

– Energy stability 
when switching 
polarization is 
critical

• NSLS-II X-ray nanoprobe
– Differential phase contrast imaging sensitive to angular stability
– Horizontal streaks are removed by stabilizing the x-ray beam using active 

beam positioning feedback. Yong Chu, Petr Ilinski, NSLS-II

Matthew Marcus, ALS

David Kilcoyne, ALS

Elke Arenholz, ALS
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Stability at Design stage

• One hopefully starts by selecting a good / quiet site (not 
always possible) - at least need to know all caveats

• Nowadays FEA allows optimization of slab design
• Important: Minimize vibration coupling from pumps, …
• Also keep external disturbances in mind (wind, sun, …)
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Courtesy: N. Simos, 
NSLS-II
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Girder Design

• Some early 3rd generation sources had massive girders (low resonance 
frequencies – sampling larger ground oscillation amplitudes)

• Later ones had girders with higher resonance frequencies but movers, 
that significantly lowered them

• Newer designs (Soleil, NSLS-II, …) avoid this caveat – smaller vibration 
transmission to beam

ALS

Soleil NSLS-II: courtesy S. Sharma
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Air/water temperature stability

• Stable environmental conditions are extremely important
• State of the art is water and tunnel air temperature stability on the order 

of 0.1 degree C
• Stable power supply controllers, invar rods for BPM mounts, … also 

help, but it is always best to also keep the conditions constant
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Left: ALS water temperature, Right: Tunnel air temperature
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Identify and Fix Problems – Beam-based

• Often vibration sources / coupling into sensitive equipment is found 
during after commissioning

• Fixing the worst offenders often gives big benefit
• Examples above: Power supply at ALS, water induced vacuum 

chamber vibration at Spring-8; Another example are viscoelastic
damping elements at ESRF

10

ALS – fixed power supply Spring-8: water vibration
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Good power supplies are essential

11

• Strong corrector magnets with high 
vacuum chamber cut off frequencies 
can be significant sources of orbit 
noise

– Observed at several light sources
• Achievable power supply performance 

is improving
• High resolution, low latency power 

supplies enable faster orbit feedbacks
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Closed orbit errors

12

• A single dipole error will 
create an orbit distortion 
which looks very simple in 
normalized coordinates:
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The matrix containing the change in position at every BPM to a kick 
from every corrector magnet is called orbit response matrix (used in 
orbit correction). For an uncoupled machine it can be calculated (linear 
approximation) using above formula.
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BPM Trends: low noise, high rate, low latency

• Digital front-end is same as NSLS-II
• Firmware, software, EPICS device support, analog 

front-end and pilot tone developed at the ALS.

70 nm daily rms noise (10 Hz bandwidth)  

Collaboration with NSLS-II

13

Also need: fast power 
supplies, magnets, special 
vacuum chambers, …

Greg Portmann, 
Mike Chin, Eric 
Norum, ALS
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Photon BPMs
• Synchrotron radiation is often abundant

– very useful for low noise, non-desctructive position measurement
• Improved lever arm for angular errors of photon beams
• Sensitive to trajectory errors inside undulators

FMB BESSY II,
ALS,
SLS,
LNLS

• Work very well for dipoles in 
the vertical plane

• For undulators OK for hard 
x-rays
• with Decker distortions if 

undulators scan a lot
• Many improved solutions for 

hard x-rays
• GRID, …

• difficult for VUV, no good 
solution for EPUs, still

14

Simple x-ray BPM for 
dipole beamline, 
which is broadly 
used.
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Example of Feedback Integration R+D -
APS

15

Courtesy: Bob Lill (APS/APS-U)
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Next some Advanced Light Source Examples

16
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ALS – orbit measurement + correction

17

• 12 nearly identical arcs; aluminum vacuum chamber
• 122 beam position monitors in each plane
• 8 horizontal, 6 vertical correctors per arc (94/70 total), 2x22 fast correctors
• 48 individual skew quadrupoles
• Beam based alignment capability in all quadrupoles

– either individual power supplies or shunts
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Orbit Drift and Jitter Sources

18
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Old ALS Example: Orbit Power Spectral Density 

• Ideally one tries to
identify all jitter/noise 
spikes on orbit spectra

– Can localize by using
multiple BPMs (and virtual 
SVD correction)

– Measurements of 
vibrations of elements or 
FEA mode analysis can 
help

• Power supply spikes can 
be identified by high 
resolution DCCTs, …
– Again multiple BPMs can

help with localizing

19
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Magnet Vibration PSD

20
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Orbit Correction

21
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Orbit Correction Methods
• Simplest method is the direct inversion of the orbit response matrix 

(equal number of BPMs and correctors).
• In case of unequal numbers use least square correction (minimizing 

the sum of the quadratic deviations from the nominal orbit) often with 
additional constraint to minimize average corrector strength.

• MICADO/MEC is a modification of LSQ. It iteratively searches for 
the single most effective corrector, calculates its correction strength, 
finds the next most effective corrector, calculates the correction 
using those two, …

• SVD uses the so called singular value decomposition. In this 
method small singular values can be neglected in the matrix 
inversion.

• Local Bumps allow to keep the orbit ‘perfect’ locally (sensitive SR 
user, interaction point, …) while relaxing the correction elsewhere.

22
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Singular Value Decomposition

23

• Any Matrix M can be decomposed (SVD)

• Where U and V are orthogonal matrices (I.e.                 ,                    ) 
and Σ is diagonal and contains the (si) singular values of M.

• Examples:
– M is the orbit response matrix

• U contains an orthonormal set of BPM vectors
• V contains an orthonormal set of corrector magnet vectors

• Because of orthogonality the inverse of M can be simply calculated:

Singularities and small singular values can be removed by removing 
columns of U & V.
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Example: SVD inverted matrix vs. number of SVs

24
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Trade-offs of Correction Methods

25

• Least square or direct matrix inversion

– Disadvantages:

• Have to trust every BPM reading

• BPM and corrector locations very critical (to avoid unobservable 
bumps)

– Advantages:

• Minimizes OBSERVABLE orbit error

• Works well for distributed/numerous errors

• localizes the correction.

• MICADO

– works well for few dominant errors (IR quads in colliders)

– Does not allow good correction for many errors. 

• SVD 

– allows to adjust behavior based on requirements. 

– Most light sources nowadays use SVD.
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Insertion Device 
Compensation
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Orbit Error without Feed Forward Correction 200 Hertz Feed Forward Correction

EPU Feed Forward Orbit Correction

27
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Orbit Feedback
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Long Term Stability (with Feedback)

• Top-off greatly improves the mid- and long-term stability 
(also for user beamline optics)
– It does present some additional challenges in form of 

injection transients, however, currently the benefits 
greatly outweigh those.

– Injection transients can be improved with better 
injection element design (magnets and pulsers), use 
of transverse multibunch feedbacks, or use of 
multipoles as injection kickers

29
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RF Frequency Feedback

30

• Circumference of ring 
changes (temperature 
inside/outside, tides, 
water levels, seasons, 
differential magnet 
saturation, …)

• RF keeps frequency fixed 
– beam energy will 
change

• Instead measure 
dispersion trajectory and 
correct frequency (at ALS 
once a second)

• Can see characteristic 
frequencies of all the 
effects in FFT (8h, 12h, 
24h, 1 year)

• Verified energy stability (a 
few 10-5) with resonant 
depolarization
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Fast orbit feedback topologies

• Many different types of fast orbit feedbacks are in use
• State of the art are systems with update rates up to 20 

kHz and closed loop bandwidths approaching 1 kHz
• In some systems, PID algorithms are supplemented by 

notch filters, …
– Other filter designs (predictive, …) could improve 

performance/robustness further

31
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Fast Orbit Feedback

32

• Time response of all 
elements becomes 
important!

• Controller type used 
is often PID

• System often are 
distributed (ALS: 15 
crates, about 100
BPMs, 22 correctors 
each plane)
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Simulink model of one channel of 
system

33
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Performance of Fast Orbit Feedback at ALS

34

Comparison of orbit PSDs with and

without fast feedback.

Fast orbit feedbacks are in use at most 

light sources: APS, NSLS, ESRF, SLS, …

Comparison of simulated 

(Simulink) and measured step 

response of feedback system in 

closed loop in a case where PID 

parameters were intentionally set 

to create some overshoot.
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Beam Based Alignment
• BPMs centers are not known well enough relative to center 

of magnetic elements (vacuum chamber positioning, button 
positions, button attenuations, cable attenuations, signal 
electronics asymmetries, …)

• Want to correct orbit to the center of magnetic elements to 
achieve optimum performance

• Non centered beam can reduce physical/dynamic aperture
– in quadrupoles: spurious dispersion, larger sensitivity of closed orbit 

to power supply ripple

– in sextupoles: gradient errors (horizontal offsets), coupling errors 
(vertical offsets)

• Allows to link beam position (photon beams) to magnet 
alignment grid – helps to allow predictive optimum alignment 
of beamlines

35
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Beam Based Alignment: Method 1

36

• BPM centers can be 
determined relative to 
adjacent quadrupole (or 
sextupole, skew quadrupole, 
using other techniques).

• Basic principle is that a 
change in quadrupole current 
will change the closed orbit if 
the beam does not pass 
through the quadrupole
center.

• Sweeping the beam across a 
quadrupole and changing the 
quadrupole strength allows to 
find the centers.
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BBA, Method 2
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Method 3: MML Beam Based Alignment

38

• The Matlab Middle Layer uses a 
third beam-based alignment 
technique

• Shown in computer class 
and Xiaobiao’s intro lecture

• The algorithm is fully automated.

• BPM offsets at ALS (like many 
rings) are fairly significant (rms of 
300 microns) but very stable.
• Offsets are typically measured 
annually or after hardware 
changes or realignment.

• Main challenge at ALS are 
systematic errors due to C-
shaped magnets.
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Summary
• Stability (orbit, beamsize) is one of the most important 

performance criteria at accelerators

• Many different methods for position and size 
measurement exist, tailored to specific needs. Best 
resolutions are nm scale.

• Multiple noise sources perturb the beam. 
– Passive noise reduction methods helps.

• Different correction algorithms are available. Advantages 
depend on the situation.

• Orbit feedbacks are used routinely, nowadays with 
several (up to 20) kHz update rate.

• Beam based alignment is essential to improve 
accelerator performance

39
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Some Material for Further Reading:
• Presentations at 2018 BES Light Sources Beam Stability Workshop: 

https://www.aps.anl.gov/BES-Light-Sources-Beam-Stability-
Workshop/Presentations

• B. Hettel, Rev. Sci. Instr. 73, 3, 1396 
• W.H. Press et al., Numerical Recipes, Cambridge U. Press (1988) p. 52
• Presentations at 2nd International Workshop on Beam Orbit Stabilization 

(2002)
• Presentations at the 3rd International Workshop on beam Orbit 

Stabilization (2004): http://iwbs2004.web.psi.ch/program/orals.html
• A. Friedman, E. Bozoki, NIM A344 (1994) 269 
• J. Carwardine, F. Lenkszus, Proceedings of the 1998 Beam Instrumentation 

Workshop, 
http://www.slac.stanford.edu/pubs/confproc/biw98/carwardine.pdf
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Backup Slides
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Commissioning results of new 
ALS AHU controls
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