

(Simulation of) Beam Based Commissioning of Storage Rings Christoph Steier

USPAS Knoxville, January 2019

Lecture mostly based on work by Thorsten Hellert, LBNL Some results from Vadim Sajaev, ANL

Outline

- Simulated commissioning of light sources
 - Motivation
 - » Challenges of multi bend achromat lattices
 - » Error / alignment tolerances
 - Development of a toolbox for simulated commissioning
 - Application to the Advanced Light Source Upgrade
 - Other Examples (APS-U)

Recent advances enable ultrabright rings

- Storage-ring light sources have not reached their practical limits of brightness and coherence.
- Dramatic improvements are possible due to transformational advances in accelerator technology.
- What has changed:
- Tightly packed, multibend achromat (MBA) lattices via new magnet and vacuum technology.
- Better understanding of storage-ring scaling, advances in simulation, optimization, and alignment.
- International community is now upgrading existing facilities and building new facilities using MBA designs
- Producing much higher coherent flux.

The successful commissioning of MAX IV is a proof of principle and provides a solid technical basis for ALS-U

3

MBA project at LBNL: ALS-U - 9 bend achromat

Advanced Light Source Upgrade (ALS-U)

Diffraction Limit, Brightness, Coherent Fraction

Brightness is inversely proportional to convolution of electron beam sizes and divergences and diffraction emittance Brightness = $\frac{\text{Spectral Flux}}{(2\pi)^2 \sigma_{Tx} \sigma_{Tx'} \sigma_{Ty} \sigma_{Ty'}}$ $\beta_x = 10 \text{ m}$ $\sigma_{Tx} = \sqrt{\sigma_x^2 + \sigma_\gamma^2}$ Electron Photon phase space **Electron** Photon $\varepsilon_r = 8 \text{ pm}$ **Coherent fraction = ratio of diffraction-limited emittance to total** emittance $f_{coh} = \frac{F_{coh,T}(\lambda)}{F(\lambda)} = \frac{\sigma_{\gamma}\sigma_{\gamma}'}{\sigma_{Tx}\sigma_{Tx'}'} \frac{\sigma_{\gamma}\sigma_{\gamma}'}{\sigma_{Ty}\sigma_{Ty'}}$ DLSRs produce photon beams with dramatically larger coherent fraction due to reduced horizontal emittance

USPAS. Knoxville // Jan. 21-25 2019 // Christoph Steier

 $\varepsilon_r = \text{diffraction limited emittance} = \sigma_\gamma \sigma'_\gamma = \frac{\lambda}{4\pi} = \begin{cases} 80 \text{ pm rad @ 1 keV} \\ 8 \text{ pm rad @ 10 keV} \end{cases}$

ALS-U example: Nine-bend achromat lattice reaches the soft x-ray diffraction limit up to 1.5 keV

ALS today : triple-bend achromat

Challenges: Small emittance requires very strong quadrupoles and very strong sextupoles - very tight alignment tolerances and nonlinear beam response already at small (<= 1 mm amplitude)

USPAS, Knoxville // Jan. 21-25 2019 // Christoph Steier

ALS-U: nine-bend achromat with reverse bends

Large increase in coherent fraction due to lower emittance and smaller β-functions

Motivation for the development of new method

Challenging lattice of future light sources

- Strong focussing & small aperture High sensitivity to alignment errors -
- Getting to stored beam with realistic alignment tolerances is not straight forward
- Standard approach of setting error tolerances would lead to results that would not be feasible / cost effective
- Enabling technology: high resolution turn-by-turn BPMs

Realistic simulation of commissioning process required

- Realistic error model
- Efficient trajectory/orbit/linear optics correction strategies
- Set (cost effective) requirements
- Evaluate robustness of lattice and set tolerances for errors
- Speed up machine commissioning

Choice of implementation

- ALS-U will be operated with *Matlab Middle Layer* (MML)
- Easy communication between MML and Accelerator Toolbox (AT)
- AT implementation of ALS-U commissioning allows for experiments at ALS

Limited accessibility of machine properties

Power supplies

Operating machine

Setpoints and read back values

High level controls

Realistic workflow of toolbox important

Set Quad to setpoint

- Compensates bending angle difference by setting horizontal CM
- Checks for CM range (clipping)

Calculate fields

- Calibration errors of all components
- Includes dipole kick from bending angle (set-point & roll)

Auxiliary structures

- Diagnostic errors
- Injected beam trajectory
- Injection pattern
- Current CM limits

USPAS, Knoxville // Jan. 21-25 2019 // Christoph Steier

rrors am y ttern

Get BPM reading

- Performs tracking including aperture
- Gets BPM signal from ensemble of particle trajectories

- High level functions use only BPM and setpoints as input
- High level functions write only setpoints

Large number of error sources (values rms)

Magnet errors

- Magnet offset = 30 µm
- Magnet roll = 0.2 mrad
- Magnet strength = 0.1%
- Girder offset = 100 µm
- = 100 µm Plinth offset
- Arc offset = 100 µm
- Sys. dipole error = 0.5 %

Diagnostic errors

- **BPM** offset = 500 µm
- BPM cal. error = 5%
- BPM noise
- BPM roll
- CM cal. error
- CM roll

- = 3 µm
- = 0.4 mrad
 - = 5%
 - = 0.4 mrad

Static injection errors •

- Δx = 500 µm
- Δx' = 200 µrad
- = 500 µm – Δy
- Δy' = 200 µrad
- $\partial E = 0.1\%$
- $-\Delta s$ = 0

Injected beam size

- $-\Delta x$ = 64 µm
- = 32 µrad – Δx'
- $-\Delta y$ = 8 µm
- Δy' $= 3 \mu rad$
- $\partial E = 0.1\%$
- ∆t = 15 ps

- Injection jitter •
 - = 10 µm $-\Delta x$
 - Δx' $= 6 \mu rad$
 - Δy = 1 µm
 - = 0.5 µrad − Δy'
 - = 0.01 % — δE
 - Δφ = 0.1°
- **RF** errors
 - $\Delta V = 0.1 \%$
 - $-\Delta \phi = \pi/2$
- Higher order multipoles Static, up to 10th order

Distribution of BPMs and Correctors

- 12 arcs with each 20 BPMs and 20 corrector magnets (CM)
- All CMs embedded in quadrupole and sextupole magnets •
 - All CMs horizontal & vertical
 - CM limits: 0.2 mrad

High fidelity misalignment model

- Lateral misalignment model typically used in simulations:
 - Transverse magnet offsets
 - Transverse raft offsets
- ALS-U support system with plinths and rafts
 - Adjacent rafts do not move freely due to ground settlement but in correlated way
- Realistic error model follows magnet support system
 - Magnets
 - Rafts & Plinths
 - Entire arcs

Choice of reference orbit

- AT uses design coordinate system
 - Tracking performed in ideal co-moving frame
- In reality BPMs mounted on vacuum chamber or raft
 - Vacuum chamber follows magnet/raft alignment

 $\mathbf{0}$

У'

0

- Reasonable implementation: BPMs follow raft alignment
 - Systematic offset from raft
 - Random offset from BPM imperfections
 => To be reduced with BBA

Principles of trajectory correction

- Trajectory correction
 - Find corrector setting $\vec{\phi}$, that minimizes BPM reading: $\vec{x} = 0$
 - Assuming linear response: $\vec{x} = \vec{x_0} + \underline{M} \cdot \vec{\phi}$
 - Solution requires inverse: $\vec{\phi} = -\underline{M}^+ \cdot \vec{x_0}$
- Singular value decomposition
 - SVD: $\underline{M} = \underline{U} \cdot \operatorname{diag}(\vec{\sigma}) \cdot \underline{V}^T$
 - Pseudo inverse: $\underline{M}^+ = \underline{V} \cdot \operatorname{diag}(\vec{\sigma}^+) \cdot \underline{U}^T$
 - Regularization: $\sigma_i^+ = 1/\sigma_i \text{ (with } \sigma_i^+ = 0 \text{ for } i > n)$
 - Minimizes: $||\underline{MM}^+ \cdot \vec{x_0} \vec{x_0}||_2$
- Problems:
 - Actual response \underline{M} differs from design
 - $\underline{M}^+ \cdot \vec{x_0}$ can be exceedingly large
- Standard approach:
 - Use only limited amount of singular values (SV)
 - And/or try different combinations of CMs and SVs

Particular in early commissioning

Particular with small CM range

T. Hellert, P. Amstutz

Feedback based trajectory correction

Trajectory correction

- Find corrector setting $\vec{\phi}$, that minimizes BPM reading: $\vec{x} = 0$
- Assuming linear response: $\vec{x} = \vec{x_0} + \underline{M} \cdot \vec{\phi}$
- Solution requires inverse: $\vec{\phi} = -\underline{M}^+ \cdot \vec{x_0}$
- Singular value decomposition
 - Using all CMs and a Tikhonov regularization of inverse of response matrix
 - $\underline{M} = \underline{U} \cdot \operatorname{diag}(\vec{\sigma}) \cdot \underline{V}^T$ SVD:
 - Pseudo inverse: $\underline{M}^+ = \underline{V} \cdot \operatorname{diag}(\vec{\sigma}^+) \cdot \underline{U}^T$
 - Tikhonov:
 - Minimizes:
- Advantages:
 - Very efficient
 - Useful handle: CM strength vs BPM readings

$$\sigma_i^+ = \sigma_i \, / (\sigma_i^2 + \alpha^2)$$

$$|\underline{MM}^+ \cdot \vec{x} - \vec{x}||_2 + |\alpha| ||\underline{M}^+ \cdot \vec{x}||_2$$

CMs

Correction chain for commissioning ALS-U

Initial transmission

- Achieve first turn transmission
- Trajectory correction for multi-turn transmission
- Improving multi-turn transmission
 - Perform beam based alignment
 - Correct injected trajectory error
- **Closed orbit correction**
 - Match injection trajectory
 - Commissioning of RF cavities
 - Synchronous energy correction
- Achieve beam capture
 - Ramp up sextupoles (chromaticity correction)
 - Trajectory based optics correction
- Achieve design machine parameters (emittance, lifetime, ...)
 - LOCO based optics correction
 - ID closing

16

First turn threading

- Feedback on all BPMs with all upstream CMs
- If beam is stuck for 10 iterations, wiggle with increasing number of CMs
- Run feedback to ensure minimized BPM readings

• First turn threading

- Feedback on all BPMs with all upstream CMs
- If beam is stuck for 10 iterations, *wiggle* with increasing number of CMs
- Run feedback to ensure minimized BPM readings

First turn threading

- Feedback on all BPMs with all upstream CMs
- If beam is stuck for 10 iterations, wiggle with increasing number of CMs
- Run feedback to ensure minimized BPM readings

First turn threading

- Feedback on all BPMs with all upstream CMs
- If beam is stuck for 10 iterations, wiggle with increasing number of CMs
- Run feedback to ensure minimized BPM readings
- Stitching first and second turn
 - If no beam in 2nd turn, wiggle with increasing number of last CMs
 - Run feedback on first 3 2nd turn BPM readings with 1st turn BPM readings as reference

Balancing first and second turn

Run feedback on all 2nd turn BPM readings with 1st turn BPM readings as reference

First turn threading

- Feedback on all BPMs with all upstream CMs
- If beam is stuck for 10 iterations, wiggle with increasing number of CMs
- Run feedback to ensure minimized BPM readings
- Stitching first and second turn
 - If no beam in 2nd turn, wiggle with increasing number of last CMs
 - Run feedback on first 3 2nd turn BPM readings with 1st turn BPM readings as reference
- Balancing first and second turn
 - Run feedback on all 2nd turn BPM readings with 1st turn BPM readings as reference
- Minimize 2 turn BPM readings
 - Feedback on all BPMs within 2 turns using all CMs

Beam based alignment in early commissioning

- Initial BPM offsets ~500µm rms
 - Limits capability of trajectory correction
 - Strong sextupole magnets require on axis beam
 - Ideal: align BPMs to magnet centers

Beam based alignment in early commissioning

- Initial BPM offsets ~500µm rms
 - Limits capability of trajectory correction
 - Strong sextupole magnets require on axis beam
 - Ideal: align BPMs to magnet centers
- Requirement on adequate BBA routine
 - Significant optics errors during early commissioning
 => Model independent
 - Beam survives only limited amount of turns
 => Single pass

Implementation of BBA procedure

- Change injected beam trajectory
 - Scale for maximum signal
 - Changing phase advance if needed
- Change quadrupole within +/-5%
 - Compensate for bending angle difference
- Calculate trajectory with zero quadrupole dependence
 - Include many downstream BPMs, but:
 - Check for sufficient transmission
 - Check for distribution of fitted quadrupole centers
 - Check for 'feasibility' of result

Implementation of BBA procedure

- Change injected beam trajectory
 - Scale for maximum signal
 - Changing phase advance if needed
- Change quadrupole within +/-5%
 - Compensate for bending angle difference
- Calculate trajectory with zero quadrupole dependence
 - Include many downstream BPMs, but:
 - Check for sufficient transmission
 - Check for distribution of fitted quadrupole centers
 - Check for 'feasibility' of result
 - ..
- Satisfactory performance

Development example: Beam based alignment using first turn trajectories on ALS

- Demonstrated trajectory correction and ability to do better than 100 micron accuracy beam-based alignment without requiring stored beam.
- Algorithm includes trajectory fit (using ideal lattice) with fitted kick at location of quadrupole to be centered - about 10 injection shots needed per magnet/BPM

ALS and trajectory fits using the ideal machine model.

> Already used after ALS shutdown to recover much faster from complex hardware failure

- Perform beam based alignment
 - Minimize BPM offsets

- Perform beam based alignment
 - **Minimize BPM offsets**
- Match closed orbit to injection
 - Match 2nd turn to 1st turn BPM readings => Creates closed orbit bump at injection point

- Perform beam based alignment
 - Minimize BPM offsets
- Match closed orbit to injection
 - Match 2nd turn to 1st turn BPM readings
 => Creates closed orbit bump at injection point
- Correct injected trajectory error
 - Use drift between last 1st turn BPM and first
 2nd turn BPM to determine injection trajectory
- Minimize 2 turn BPM readings
 - Apply static injection correction adiabatically while running 2 turn feedback

- Perform beam based alignment
 - Minimize BPM offsets
- Match closed orbit to injection
 - Match 2nd turn to 1st turn BPM readings
 => Creates closed orbit bump at injection point
- Correct injected trajectory error
 - Use drift between last 1st turn BPM and first
 2nd turn BPM to determine injection trajectory
- Minimize 2 turn BPM readings
 - Apply static injection correction adiabatically while running 2 turn feedback
- Get final closed orbit
 - Match 2nd turn BPM readings to 1st turn BPM readings

RF cavity commissioning

- RF phase critical parameter
 - Frequency error negligible
 - Voltage error small compared to overall voltage
 => Can be adjusted with synchronous phase
- Requirements for RF phase correction:
 - Transmission over 5 turns
- Measurement steps: vary RF phase
 - Evaluate BPM readings over 20 turns
 => Much smaller than synchrotron period
- Calculate mean turn-by-turn horizontal trajectory variation at all BPMs
 - $<\Delta x > /\mathrm{turn} \propto \sin(\phi + \Delta \phi) + c$
- Fit sinusoidal function and identify synchronous phase

Synchronous energy correction

- Momentum aperture in early commissioning
 - Significantly decreased by optics errors
 - Rms bunch energy spread 0.1%
 - Injection at sync. energy critical for beam capture
- Requirements for energy correction:
 - Sufficient multi-turn transmission
 - Well corrected RF phase
- Measurement steps: vary horizontal CMs
 - Evaluate BPM readings over 150 turns
 => Less than half of synchrotron period
- Calculate mean turn-by-turn horizontal trajectory variation at all BPMs
 - $<\Delta x > /\mathrm{turn} \propto \Delta E + c$
- Fit line and identify synchronous energy

32

Last Step: Linear Optics Correction

Beta beat and dispersion errors can be effectively corrected

Beta beat well below 1%

- Horizontal \in [0.27 | 0.58] %
- Vertical \in [0.14 | 0.41] %
- Mean = [0.39 | 0.23] %

Dispersion below ~1 mm

- Horizontal ∈ [0.05 | 0.38] mm
- Vertical ∈ [0.05 | 1.07] mm
- Mean = [0.14 | 0.32] %
- Trade off between beta beat and dispersion

T. Hellert - work in progress, not all error sources are included in this part of simulation, yet.

Other Examples: APS-U

Commissioning simulation ensures fast actual commissioning

We performed start-to-end simulation of orbit and lattice correction, trying to include as many types of errors as possible, to ensure that fast commissioning is possible

- Gird
- Eler
- Dip
- Qua
- Dip
- Qua
- Sext
- Cor
- Initi
- BPI
- BPN
- BPN
- BPI
- BPI

USPAS, Knoxville // Jan. 21-25 2019 // Christoph Steier

These errors are included in the simulations:

der misalignment	$100~\mu{ m m}$
ments within girder	$30~\mu{ m m}$
ole fractional strength error	$1 \cdot 10^{-3}$
adrupole fractional strength error	$1 \cdot 10^{-3}$
ole tilt	$0.4 \mathrm{mrad}$
adrupole tilt	$0.4 \mathrm{mrad}$
tupole tilt	$0.4 \mathrm{mrad}$
rector calibration error	5%
ial RDM affect arror	$500 \mu m$
iai DE M Oliset el loi	$300 \ \mu \text{m}$
M calibration error	$500 \ \mu m$ 5%
M calibration error M single-shot measurement noise	$5\% 5\% 30 \ \mu m^*$
M calibration error M single-shot measurement noise M orbit low-current noise	$5\% 5\% 30 \ \mu m^* 3 \ \mu m$
M calibration error M single-shot measurement noise M orbit low-current noise M orbit high-current noise	$500 \ \mu m^{*}$ $30 \ \mu m^{*}$ $3 \ \mu m$ $0.1 \ \mu m$

APS-U example: procedure / results

Automated procedure performs start-to-end commissioning

- Procedure is made as realistic as reasonably possible by including •
 - Error generation
 - First-turn trajectory correction
 - Global trajectory correction until the orbit is established
 - RF frequency and phase set up
 - Orbit correction with sextupole ramp
 - Beta function correction using response matrix fit
 - Coupling correction minimizing cross-plane orbit response
 - Coupling adjustment to 10% at separated tunes
- The simulations are typically run for 200 error seeds ۲
- The procedure is with tunes that are separated and moved away from integer (0.18 and 0.22 instead of 0.10 and 0.10)
 - Tunes are returned back after commissioning is completed

V. Sajaev

35

APS-U example: early tests on APS

Completed steps:

- Correction of injected beam coordinates
- First-turn trajectory correction using multi-corrector threading
- Equalizing end-of-turn coordinates to injected coordinates to create "closed orbit" condition
- Global trajectory correction
 - Results in ~20 turns
- Used in operations for years:
 - Beta function and coupling correction using response matrix
- Still to complete
 - Orbit correction with low number of turns
 - BPM sanity checks to determine miswired BPM cables
 - RF setup

-0.20

-0.25

20

During global traj correction

0

V. Sajaev

Summary

- Realistic simulation of commissioning process required
 - Challenging lattice of future light sources
 - Standard approach of error tolerance determination not feasible
 - Tolerances studies must include commissioning process
- Development of start-to-end commissioning simulation at multiple places
 - ALS-U / APS-U
 - simulations also in progress at other MBA rings under design, like HEPS, PETRA-IV
- Specific features of ALS-U approach
 - Feedback-like trajectory correction scheme using high resolution turn-by-turn BPMs
 - Reliable multi-turn transmission
 - Model independent single pass BBA procedure
 - 6D closed orbit correction

