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Turn-by-turn monitor  *. >

Turn-by-turn measurements of
synchrotron radiation are used for Minty and Spence, PAC’95

measuring beam instability and injection
mis-match.
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Beam size measurement, spatial coherence\
(Mitsuhashi, PAC97)

Michelson’s method for measuring the size of stars applied to measuring
electron beam size. Spatial cohence increases as beam size decreases.
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2D visible light interferometer, ~ ¢~

M. Masaki and S.Takano.
J.Synchrotron Rad. 10 (2003) 295
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n-mode SR beam size measurement

o Image vertically polarized SR

O Intensity at y=0 determined by ¢,

o Andersson et al., NIMA 591 (2008).

o Angela Saa Hernandez, ALERT 2014 Workshop
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Vertical emittance measurement in Australla
with vertical undulator
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Beam size measurements ‘.
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Laser wire beam size measurement

A laser wire successfully measured very small beam sizes at KEK ATF, H.
Sakai et al., PRST-AB Volume 5 (2002)
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Measures of beam size

oLuminosity scan (Y. Cai, EPAC’00, p 400)
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Measurement of the Transverse Beam Emittance

Method I: quadrupole scan

Principle: with a well-centered
beam, measure the beam size
as a function of the quadrupole
field strength

Here
Q is the transfer matrix of the quadrupole
R is the transfer matrix between the quadrupole
and the beam size detector

The (11)-element of the beam transfer matrix is found after algebra
to be:

which is quadratic in the field strength, K M. Minty, F. Zimmermann
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Measurement: measure beam size versus quadrupole field strength
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o ESRF — many beam size diagnostics
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X-Ray pinhole camera

Pinhole camera on X28 dipole beamline at NSLS X-Ray Ring:

7.5m o 9.3 m

a

irror
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pinhole: X-rays exit vacuum

molybdenum chamber through video
i 250 um Be window. camera
crossed slits 18 vAG
hosph
Slit gap set to 25 um Al foil to phosphor
30 um and harden spectrum.
confirmed by L~
measuring B
diffraction from Slit has angles to
HeNe laser. avoid internal x-ray
reflections.

H,O-cooled Cu
pre-absorber
takes heat load.
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What is measured?

The standard formula for a pinhole camera, i=(L2/L1)o, assumes that
the object is radiating light equally in all directions. Synchrotron
radiation is highly collimated in the direction of the electrons, so
this formula does not necessarily hold.

I'll show that for a dipole beamline, it does hold in the horizontal
plane, but does not in general in the vertical plane.

The problem in the vertical plane is that electrons at the top of “o0”
(in this case the top of the electron beam) do not necessarily radiate
photons that go through the pinhole, so i<(L2/L1)o.
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Review of electron phase space

The on-energy electrons in a storage
ring make a Gaussian in phase space. war i
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photon ellipse at source
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Photon ellipse atsource . 3~
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Measured vertical profile . =
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The beam profile at the source point seen by the pinhole camera is the

intersection of the pinhole camera acceptance, y’=-y/L1, and the photon

ellipse. Oymeas = Oye.  The electron emittance can be found with:
e +Be+C=0

B=-0 ..(y =20/ L1+ B/ L1*) + 0;(yn’° + 2ann'+ By ) + o,

C =0, (07 +05('+n/ L1)*) + 00,
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Measured horizontal profile
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Resolution & image processing

Two contributions to
resolution:

1. Pinhole diffraction.

2. Resolution of detector
(phosphor, mirror, lens,

Vertical profile, skew quadrupoles on.

and CCD). 250 : l .
— deconvolved profile
. - e raw data
The two resolution functions 200 |
are deconvolved from each |
horizontal and vertical slice. 150

A two dimensional, tilted
Gaussian is fit to the resulting

intensity

o
o ]

profile. /
Example for one vertical slice 5

-200 -100 0 100 200
y in gm at the photon source point
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Diffraction A

Even though we are dealing with X-Rays, diffraction is a significant
resolution limitation. The diffraction pattern was calculated numerically
as a function of pinhole dimension. For large pinholes, it looks like a
geometric image of the square pinhole. For small pinholes, it looks like
Fraunhofer diffraction, getting larger as the pinhole gets smaller. The

pinhole size that gives the best resolution is somewhere between the
Fraunhofer regime and geometric image.

Calculating Powerl obs'orbfad ‘by[ 5 mm YAG pho§phor of‘ter AI. f0||_.

1 :
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Resolution functions

Resolution functions

All secondary maxima in the ' ' ’ ' '
diffraction pattern wash out M0 T phosphor & camera } .
when integrating over the ogl  (FWHM = 11um) ';' ':
wavelength spectrum. : e 1
The resolution of the detector 0.6 pinhole diffraction / ||} |
was measured by placing a < (FWHM = 36um) ik
very narrow slit just in front of =0.41 a s
the phosphor. '

02 B :l |
The measured image is a ;
convolution of the real profile 0 e —
with the resolution functions. . | . . .

-200  -100 0 100 200

Imeas =R® Ireal y in um at the photon source point

The data and resolution functions are sets of discreet points, so the
deconvolution could be turned into a big matrix inversion. A more
traditional method uses FFTs. Convolution in frequency space is simply

multiplication, so deconvolution becomes division.
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Deconvolution

Vertical profile, skew quadrupoles on.

200 |

intensity
g

=
o
(@]

w
=

— deconvolved profile
--raw data

T

1. FFT

A

4. FFT

v

—-200

1
-100

0

|
100

200

y in um at the photon source point

Resolution functions

=X
(en]

&
o

o
(o]
T

intensity

©
I~
T

=
No
T

| — phosphor & camera §
(FWHM = 11um)

pinhole diffraction
(FWHM = 36um)

T

@

=

<

)

o

=)
>

1. FFT

—-200

-100

0

100

200

y in um at the photon source point

Beam size measurement

v

A%
R

=1

5

Spatial frequency omplitu&e from FFT.

T T T e
2. Filter -
B high
g frequency
5102 | ——deconvolved profile ! ]
Fo A T raw data \
> \‘I
S10' |
=
L
10°
10_1 L £ S e : L I S T e S| L
1 2 5 10 20 50 100 200 500
Spatial frequency
Modulation Transfer Functions
1 e ] T " | 3
0.5t
021
i Ol -
=
0.05 — phosphor & camera \
----- pinhole diffraction v
0.02 f
0.01}
L P S | L PR | \. L
1 2 5 10 20 50 100 200 500

spatial frequency

Beam-based Diagnostics, USPAS, January 21-25, 2019, J. Safranek




Modulation transfer function* .

("’\ MTF AND RESOLUTION CHART

Instead of dividing FFTs, use only M .. e
amplitude part of FFT — called [ S DRSS 7 ot oy
modulation transfer function (MTF). | bl fobo il i
MTF is a common way to specify e i o Ll e
resolution. For example, this graph ___;Ejj‘j_l:‘—j___i__i __?;\j___i___i___
came with the video camera that T o L ol it B TR
was used for the X-Ray Ring pinhole Ll mg §_\T4f___L___
camera. wa st el e W
R e N

) 100 10 200 250 300 00 500 800 (TVines)

Pulnix video camera MTF

Numerical Recipes, Cambridge Press, is a good reference for
FFTs and deconvolution.
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