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Turn-by-turn BPM data analysis 
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Outline 

• Turn-by-turn BPM data example 

• Precise tune measurements 

• Model Independent Analysis (MIA) and Independent 

Component Analysis (ICA) for TbT BPM data 

• Fitting ICA results for optics and coupling correction 

• Fitting TbT data directly for optics and coupling correction 

• Fitting trajectory scan data for linac/FEL optics correction 
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Turn-by-turn (TbT) BPM data 

• In addition to the average orbit, TbT BPM data capture the 

dynamics of beam motion. 

• TbT BPM data contain 

– Temporal information:  

• various frequency components from single particle dynamics 

• De-coherence/re-coherence – a collective effect 

– Spatial information: BPMs at different location see different 

amplitudes and phases of the frequency components. 

– Noise 
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Simulated, no noise 



Examples of turn-by-turn BPM data 
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Precise tune determination from discrete data 

• NAFF (numerical analysis of fundamental frequency)  

– Maximize the spectrum overlap between the sample and that of a 

pure sinusoidal signal.  

 

 

 

 

• Interpolated FFT 

– Interpolation with peak frequency and its highest neighbor. 
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𝐹 𝜈 =  𝑠𝑛𝑒
−𝑖2𝜋𝜈 𝑛𝑊 𝑛

𝑁

𝑛=1

 

J. Laskar, et al,1990, Icarus 88, 266-291 

R. Bartolini, et al, EPAC 96 

These methods can achieve accuracy ∝
1

𝑁2
, or ∝

1

𝑁4
 when with data windowing.   



Extracting frequency components 

• With the tune determined, amplitude and phase of the 

frequency component can be obtained by 

 

 

 

 

 

• The frequency components can be iteratively extracted.  
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𝐶 =  𝑥 𝑛 cos 2𝜋𝑛𝜈𝑛 ,          𝑆 =  𝑥 𝑛 sin 2𝜋𝑛𝜈𝑛 ,   

Then amplitude and phase are 

𝐴 =
2 𝐶2+𝑆2

𝑁
,   and   𝜓 = −cot−1

𝑆

𝐶
, 

where 𝑁 is the number of turns. Error of phase 

𝜎𝜓 =
1

𝐴

2

𝑁
𝜎𝑥 

P. Castro, et al, PAC’93 

J. Laskar, et al,1990, Physica D, 67, 257, (1993) 

The amplitudes and phases of the various 

frequency components from BPMs at 

different locations can be used for optics, 

coupling, and nonlinear dynamics 

correction. (See Christoph’s lecture) 

A. Franchi, et al, PRSTAB 14, 034002 (2011) 

A. Franchi, et al, PRSTAB 17, 074001 (2014) 



The three-BPM method 

• The measured phase advances on three BPMs can be 

used to determine the beta function (aided by a model) 
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R. Tomas, et al, PRSTAB 13, 

121004 (2010) 

P. Castro, et al, PAC’93 

Measured phase advance and beta function can be used to fit model and 

correct the linear optics.   



Model independent components and independent 

component analysis for TbT data processing 
• In the previous method data processing is performed for 

each individual plane (𝑥 or 𝑦) of each BPM 

• A better approach is to treat all BPM data collectively and 

coherently, because 

– All BPMs observe the same signals. 

– Number of BPMs is typically much bigger than the number of 

signals.  

– Statistical advantages can be achieved when proper methods are 

used to extract the signals from the large number of samples. 

• Methods taking the coherent approach include 

– Model independent analysis (principal component analysis) 

– Independent component analysis.  
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J. Irwin, et al, PRL 82, 1684 (1999) 

X. Huang, PRSTAB, 8, 064001, 2005 
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A model of BPM turn-by-turn data 

• The turn-by-turn beam position signal is a combination of 

various source signals. 

 

)()()( ttt nAsx 

)()()( tntsatx j

j

jiji 

Form a matrix of the BPM data 

or 

For the i’th BPM 

A is the mixing matrix 

m BPMs and T 
turns 

There are only a few meaningful source signals, such as betatron oscillation 

and synchrotron oscillation. 

X. Huang, PRSTAB, 8, 064001, 2005 
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Betatron modes via singular value decomposition   
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It has been proven* that when the BPM reading contains only one betatron mode, i.e. 

))(cos()(2)( mmm ttJtx  

* Chun-xi Wang, et al. PR-STAB 6, 104001 (2003). 

then there are only two non-trivial SVD eigen-modes  
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u:  spatial vector v:  temporal vector 

Beta function and betatron phase advance can be calculated from the spatial vector.  
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U,V are orthogonal matrices, 

S is a block-diagonal matrix. 

Note the constant orbit offsets are always removed 

for each BPM. This is called “centering”.  
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What does SVD do? 
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The BPM data can be viewed as T points in the m-dimensional space.  

))(,),(),(()( 21 txtxtxtP m

These points form an hyper-ellipsoid. What SVD does is to identify its principal-

axes. This is called principal component analysis (PCA). 

PCA: with a linear orthogonal transformation to obtain a set of linearly un-

correlated components (variables) which holds (successively) the largest 

variances.  

The results in the previous slide states: with only one betatron mode in the BPM 

data, the hyper-ellipsoid degenerates to  an ellipse (2D).  

Projection onto (x1, x2) Projection onto (x1, x3) 

TTT
SSUUxx     , The U matrix diagonalize the covariance matrix. 
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Noise reduction with SVD 
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As the random noises are distributed in all eigen-modes while the signals are 

concentrated in the leading eigen-modes, noise can be reduced by re-constructing 

the data after removing the noise-only (with small singular values) modes.  
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Example of SVD analysis 

X. Huang, USPAS, Knoxville, TN 13 

Spatial vector 

0 20 40 60 80 100 120
10

-3

10
-2

10
-1

10
0

index

S
V

mode 1

Log scale 

Temporal vector 

This data set is from tracking the SPEAR3 lattice with added random noise (sigma=0.05 mm).  

You will play with this program (and the data sets) in the computer-lab class.  
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Limitation of the PCA method 
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The eigen-modes are determined by the orthogonality and variances (strengths) of 

the components. If two signals have nearly the same strengths, they will be mixed 

in the eigen-modes (degeneracy in eigen-analysis). In reality this is common: 

(1) Horizontal and vertical betatron modes can be mixed.  

(2) Betatron modes can be mixed with the synchrotron mode.  

(3) Actual BPM data are often plagued by signal contamination or failing 

electronics.  
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The independent component analysis (ICA) 

• The source signals are assumed statistically independent. 
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)()(),( 2121 xpxpxxp 

This is a strong condition that the PCA analysis does not make full use of.  

)}({)}({)}()({ 22112211 xhExhExhxhE  For any function h1,h2. 

PCA only requires the components to be linearly uncorrelated, i.e., the 

covariance between two variables is zero.  

0}{}{}{ 2121  xExExxE

For two Gaussian variables, uncorrelatedness is equivalent to independence. 

Many ICA algorithms exploit the non-gaussianity of the signals, such as fastICA. 

It is possible to use non-gaussianity based methods for BPM data analysis. But 

we will focus on an algorithm that relies on the time-spectrum of the source 

signals. 
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The Principle  

• The source signals are assumed to be narrow-band with 

non-overlapping spectra, so their un-equal time covariance 

matrices are diagonal. 

Since 

The mixing matrix A diagonalizes the un-equal 
time sample covariance matrices simultaneously. 

)()()( ttt nAsx 
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The Algorithm* - 1 

• Diagonalize the equal-time covariance matrix (data 

whitening) 

Izz  T

T

x ],[],[)0( 21

2
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21 UU
D

D
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



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


VxxUDz 


T

1
2

1

1

)min()max(0 12 DD  cwith 

Set to remove 
noise 

D1,D2 are 
diagonal 

Construct an intermediate “whitened” data matrix 

which satisfies 

This pre-processing step is just PCA. Matrix z contains 
the temporal vectors. 

* The second order blind identification (SOBI) algorithm of A. 
Belouchrani, et al. in IEEE Trans. Signal Processing, 48, 900, (2003). 
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The Algorithm - 2 

• Jointly diagonalize* the un-equal time covariance matrices 

of matrix z of selected time-lag constants. 

T

sz WWCC )()(   },,2,1|{ kii  

WDUA )( 2

1

11VxWs
T

Then 

and 

for 

The columns of A (spatial vectors) and corresponding 
rows (temporal vectors) of s are the resulting modes. 

*Algorithm for joint diagonalization can be found in J.F. Cardoso and A. 

Souloumiac, SIAM J. Matrix Anal. Appl. 17, 161 (1996) 
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Linear Lattice Functions Measurements 

• There are two betatron modes because each BPM sees 

different phase. 

 

 

 

 

 

• There is one synchrotron mode. 
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The synchrotron component 

Dispersion function and momentum deviation 
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Example: de-coupling 

FFT spectra of raw horizontal and vertical 
BPM signals at section L1. Both BPMs see a 
mixture of the “plus” mode and “minus” mode. 

The ICA method can de-couple the normal modes in presence of 
linear coupling.   
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Example: SPEAR3 data 
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SPEAR3: the measured phase advance 

X. Huang, USPAS, Knoxville, TN 22 

1 2 3 4 5 6 7 8
4

6

8

10

12

14

16

BPM


y
 (

m
)

 

 

meas

model

1 2 3 4 5 6 7
0

0.5

1

1.5


 

y

 

 

meas

model

1 2 3 4 5 6 7
0

0.5

1

1.5

2


 

x

 

 

meas

model

1 2 3 4 5 6 7 8
0

5

10

15

BPM


x
 (

m
)

 

 

meas

model

There are BPM gain errors. But the phase advances are in excellent 

agreement with the model.  

Phase advance between BPMs 
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Example: Nonlinear modes in tracking data 
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The betatron modes. 

Data from tracking SPEAR3 model. There are 57 BPMs. 
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Example: coupling and nonlinear modes in tracking data  
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Application: APS data  
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Comparison of precision of phase measurements 
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Phase measurement with Castro’s method and ICA from simulated data (SPEAR3) 

Nominal SPEAR3 lattice With introduced quadrupole error 

Phase measurement with ICA has much higher precision than the single-BPM 

approach. 

High precision phase measurement is beneficial to optics, coupling and nonlinear 

dynamics correction with TbT BPM data.  



Optics and coupling correction with ICA results 
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TbT data with coupling with ICA mode separation 

TbT BTPM data are related to normal mode coordinates through a 

transformation matrix 𝑃, with 𝑋 = 𝑃Θ  

𝑋 =

𝑥
𝑥′
𝑦

𝑦′

 

Therefore 

where by definition 

By comparison: 

The 𝑃-matrix can be derived from the one-

turn transfer matrix. 



Fitting the model with the ICA results 

• The lattice model can be fitted to minimizing the differences 

between the amplitude and phase of the coupled modes.  

– Dispersion measurements are also included for fitting.  

– BPM gains and rolls can be fitted. 
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Comparison of beta beating from fitting results 

of LOCO and TbT data taken at the same time 

for NSLS-II ring (before correction).  

X. Huang, X. Yang, IPAC 2015 

X. Yang, X. Huang, NIMA 828 (2016) 97-104 

Optics correction with fitted ICA results has 

been demonstrated on NSLS-II. Results were 

similar to LOCO.  



Optics correction comparison study 

• A comparison of performance of several optics correction 

method was done at NSLS-II.  
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While the optics correction results are similar, only LOCO and the ICA 

method can correct optics and coupling simultaneously.  

V. Smaluk, et al, IPAC 2016 



Fitting TbT data directly for optics and coupling correction 

• Turn-by-turn beam motion can be predicted with lattice model if the 

initial phase space coordinates (x, x’, y, y’) are known.  

– x’, y’ can be determined with two BPMs separated with a drift.  

• Tracked TbT data can be fitted to measurements to determine the 

optics and coupling errors.  

– BPM gains and rolls and be included in fitting 

 

 

 

• Simulation results 
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X. Huang, J. Sebek, D. Martin, PRSTAB 13, 114002 (2010) 



Fitting linac trajectory data for optics correction 

• Steering the beam trajectory in a linac samples the machine optics, 

similar to TbT data in a ring.  

 

 

 

 

 

 

• Trajectory scan data in a linac (or transport line) can be fitted in the 

same fashion as fitting TbT data to derive quadrupole errors.  

• This has been applied to LCLS data.  
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LCLS trajectory scan. TbT BPM data in SPEAR3 

T. Zhang, X. Huang, T. Maxwell, PRAB 21, 092801 (2018) 

LCLS optics downstream of BC2 



Local analysis of phase space coordinate data 

• The (x, x’, y, y’) data between two location can be used to fit the 

transfer matrix. 

– In a storage ring, TbT data of (x, x’, y, y’) can be fitted for the one-turn transfer 

matrix and in turn the Courant-Snyder parameters (i.e., 𝛼, 𝛽). 

 

 

 

 

 

 

 

• In special occasions, the x’, y’ data may be used to directly determine 

quadrupole gradients. 
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Fitting matrix elements directly 

Fitting parameters to build symplectic matrix 

X. Huang, J. Sebek, D. Martin, PRSTAB 13, 114002 (2010) 

Fitting Δ𝑥2
′  vs. 𝑥2, the quadrupole 

strength 𝐾Δ𝑙 can be determined.  

Quadrupole and BPM layout in the 

SLAC Linac T. Zhang, X. Huang, T. Maxwell, PRAB 21, 092801 (2018) 



Application to LCLS 
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Fitted quadrupole strength (local analysis) 

vs. design model. Quad 9-13 were tuned 

away from the model for matching.   

Fitted BPM gains. The linear 

trend may indicates beam 

energy error.  

Fitted model vs. Extant 

model (using setpoints and 

magnet calibration data) 

Difference between 

measured and tracked 

trajectories before and after 

fitting.  



Summary 

• Betatron tunes and phase advances can be precisely 

determined with turn-by-turn BPM data. 

• Model independent analysis and independent component 

analysis improve the accuracy of phase advance data 

analysis by utilizing data from all BPMs. 

– ICA is more suited to separate coupled motion or data with bad 

BPMs.  

• Beta function can be derived from turn-by-turn BPM data. 

– Three-BPM or N-BPM method 

– From betatron mode oscillation amplitude (MIA/ICA) 

• Fitting phase advance and beta function to model can 

determine the optics errors for correction. 

• Directly fitting TbT or trajectory scan data can also 

determine the optics errors for rings or linacs.  
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