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Outline 

• Motivation 
- Beam based correction vs. beam based optimization 

- Manual tuning vs. automated tuning 

• Online optimization algorithms 
- Iterative 1-dim scans 

- Nelder-Mead simplex 

- Robust Simplex  

- Robust conjugate direction search (RCDS) 

- Extremum seeking 

- Genetic algorithm and particle swarm optimization 

- Bayesian optimization 

• Applications 
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Achieving optimal accelerator performance 

Accelerator design 

Build the machine 

according to design 

Set set-points to 

design values 

Machine in reality 

The process: The ideal scenario: 

All physics principles are known and included in the 

model. Optimization in design is thorough and complete.  

No mechanical (machining and alignment) and magnetic 

errors. 

Calibration is accurate. Monitors are accurate. No 

variation with time or environment.  

Machine as built is identical to the design.  

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 

However, the reality is never ideal. 

Solutions: (1) Beam-based correction. 
 (2) Beam-based optimization (tuning).  
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Beam based correction 

Actuators 

(knobs) 

Diagnostics 

(monitors) 

Deterministic 

method  

Target 

Orbit 

correction 

Orbit 

correctors 

BPMs Orbit response 

matrix 

Ideal orbit 

Optics 

correction 

Quadrupole 

correctors 

Beta, phase 

advance, orbit 

response matrix 

Response 

(Jacobian) matrix 

Design optics 

Beam based correction: correct the operating condition of a subsystem toward the 

ideal (design) condition through beam based measurements and a deterministic 

procedure.   

What if any of diagnostics, deterministic method, or ideal target is missing? 

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 
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Beam based optimization – tuning  

Beam based optimization (tuning): adjust the operating condition to optimize 

machine performance directly. 

System 

knobs 
Performance 

measures 

… 

𝑥1 

𝑥2 

𝑥𝑛 

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) 

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) 

The system is a black-box. The performance measures are evaluated by 

dialing in the knob setpoints and observing performance with diagnostics.  

Machine tuning is a multi-variable and (potentially) multi-objective 

optimization process. The function(s) is evaluated through the machine.  

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 
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Manual tuning vs. automated tuning 

Manual tuning  

Knob changing by human 

hands, data processing 

and decision making by 

human brain. 

 

Manual tuning 

Slow 

Human dependent 

Limited to small problems 

(few knobs) 

Automated tuning 

Knob changing, data 

processing, and 

decision making all by 

computer. 

Automated tuning 

Fast  

Human independent 

Scalable to large problems 

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 
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Challenges to automated tuning algorithms 

• Noise – functions evaluated on machine have noise. 
- Most of the traditional methods are designed for smooth functions.  

• Efficiency 
- Need to converge to the optimum fast. 

• Safety, reliability, robustness 
- Survive occasional outliers. 

- Cause no disaster when machine mal-functions. 

  

 

An early work on automated tuning: 

L. Emery et al, PAC2003, implemented 1D scan and the downhill simplex method. 

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 
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• Scan one variable at a time 
- Specify parameter range 

- Specify step size or number of points 

- Range and step size vary with parameter and depend on the problem  

• Could be inefficient with unnecessarily large range or fine step size 

• Could fail to locate the optimum if parameter range is too narrow or step size too 

large 

• Iterative parameter scan may be very inefficient as the 

change of one parameter can void the scan results of other 

parameters. 

Iterative 1D scans 
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• The NM Simplex method is typically very effective for smooth functions.  

• But since it relies on function value comparisons, its convergence course 

can be changed by noise.  

Nelder-Mead Simplex method 

original 
reflection 

expansion 

Outside contraction  

Inside contraction  Shrink 

Worst vertex 

With noise:  

• the determination of the worst-

value vertex may be incorrect 

• the decision on the type of 

operation may also be incorrect.  

• May lead to frequent shrink 

operation and further suffer from 

noise 

J. A. Nelder and R. Mead, The Computer Journal 7, 308 (1965). 
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• Effect of noise to the Nelder-Mead simplex method can be 

mitigated. 
- Improve data accuracy when necessary with averaging 

 

 

 

 

 

 

 

 

- Use multiple worst vertices when a winner cannot be easily determined (accept 

one that leads to successful reduction of the minimum) 

- Use fitting of multiple points along a line to determine contraction operation if 

necessary 

- Re-build the simplex when it shrinks to a certain limit 

Robust Simplex – improving robustness against noise 

The difference between the sample averages 

of two random variables, 𝑋 1 − 𝑋 2, satisfies 

The sign of 𝑋 1 − 𝑋 2 is a good estimate of the sign 

of 𝜇1 − 𝜇2 if |𝑋 1 − 𝑋 2| is substantially larger than Σ. 

X. Huang PRAB 21, 104601 (2018) 
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The RCDS algorithm 

• Robust conjugate direction search (RCDS)* performs 

iterative search over conjugate directions with a robust 

(against noise), efficient line (1D) optimizer. 
- The conjugate direction set may be updated with Powell’s method. 

- The 1D robust optimizer is designed to deal with noise.  

 

 

*X. Huang, J. Corbett, J. Safranek, J. Wu, “An algorithm for online optimization of 

accelerators”, Nucl. Instr. Methods, A 726 (2013) 77-83.  

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 



12 

Search over conjugate directions 

Inefficient search directions 

*W.H. Press, et al, Numerical Recipes 

It takes many tiny steps to get to the 

minimum  when searching along 𝑥 and 𝑦 

directions.  

*M.J.D. Powell, Computer Journal 7 (2) 1965 155 

A search over conjugate direction does not 

invalidate previous searches.   

Efficient search directions: conjugate directions 

Directions u and 𝐯 are conjugate if  

𝐮T ⋅ 𝐇 ⋅ 𝐯 = 0  

with 𝐇 being the Hessian matrix of function 𝑓(𝐱), 

𝐻𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
. 

Around the minimum 

𝑓 𝐱𝑚 + Δ𝐱 = 𝑓 𝐱𝑚 +
1

2
Δ𝐱T ⋅ 𝐇 ⋅ Δ𝐱. 

Powell’s method can update the directions  

using past search results to develop a 

conjugate set.  

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 
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Anatomy of a line optimizer that is sensitive to noise 

Step 1: Initially bracketing the minimum. 

Step 2: Successive interpolation to converge to the minimum.   

Inverse quadratic interpolation (figure from Numeric Recipes*.)  

*W.H. Press, et al, Numerical Recipes 

With noise, the comparison of values in both steps can go wrong and the 

algorithm won’t converge.  

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 

Line optimizer – Brent’s method 
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The robust 1D optimizer 

-0.06 -0.04 -0.02 0 0.02
-0.9

-0.8

-0.7

-0.6

-0.5

o
b
je

ct
iv

e



 

 

bracketing

fill-in

fitted

new minimum

Initial solution 

The robust optimizer is aware of noise in bracketing and uses noise level to 

filter out outliers. Noise level is detected before optimization.  

Bracketing: step size is increased in the search. Bracket ends are higher than 

minimum by 3 noise sigma.  

Fitting: fill in additional points when necessary to better sample within the bracket 

and then fit a parabola.  
X. Huang, Jan. 21-25, USPAS, Knoxville, TN 

X. Huang et al, Nucl. Instr. 

Methods, A 726 (2013) 77-83.  
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Implementation of RCDS 

• Parameters are bounded and normalized to [0, 1] 
- Parameters in online optimization always have limited ranges.  

- Keeping parameters within pre-defined ranges is a safety measure.  

- Normalizing parameters makes algorithm code independent of actual 

problems 

• Powell’s method of automatic updating of conjugate 

direction set is implemented. 
- In real life problems usually only a few directions are replaced before 

terminating. So we hardly benefit from this procedure for online problems.  

• The interface between the algorithm and a particular 

application is the objective function and a simple setup 

script.   

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 
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Testing the algorithm with a simulation problem 

Testing problem: coupling correction for the SPEAR3 storage ring with skew 

quadrupoles.  

The SPEAR3 storage ring 

Skew quadrupoles are 

coils on sextupoles.  

Objective: maximize beam loss over 6 

seconds (Touschek loss rate ∝ 1/𝜎𝑦).  

Knobs: 13 skew quads 

 

Setup: (1) errors are added to 42 skew 

quadrupoles. Initially all 13 correcting 

skew quads are off, with coupling ratio 

of 0.9%.  

(2) Noise level for loss rate is about 

0.06 mA/min, with initial loss rate at 0.6 

mA/min. 

(3) Initial conjugate direction set is from 

SVD of the Jacobian matrix of the orbit 

response matrix w.r.t. skew quads.  

𝐉 = 𝐔𝐒𝐕𝑇 
Each column in 𝐉 is for a skew quad.  

Conjugate directions are represented 

by columns in 𝐕. 
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Simulation results for three direct search methods 
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(1) Showing history of the best solution.   

(2) The simplex method is efficient without 

noise, but fails to reach the minimum with 

noise.  

(3) Powell’s method works without noise, but 

fails with noise. The initial direction set are 

individual skew quads.  

(4) The RCDS method is efficient with or 

without noise.  

The performances of algorithms for noisy 

problems depends on the problems.  
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Detailed look of an RCDS run 

History of objective  

History in parameter space 

Distance to best solution in 

normalized parameters. 

The algorithm converges fast but it does 

not stay right at the minimum – it keeps 

probing around.  

 

So usually we need to sort the solutions 

and apply the best one to the machine.  
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Comparison of algorithm performances 

Best performance for several algorithms  
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“IMAT”: iterative scan of each skew quad with the robust 1D optimizer.  

The difference between “IMAT” and “RCDS” clearly shows the power of using 

conjugate direction set for problems with highly coupled parameters.  

Only “IMAT” and “RCDS” have steady gains toward the minimum – a 
manifest of the noise-resistance feature of the robust 1D optimizer.   
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Coupling correction experiments on SPEAR3 with RCDS 
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all

best

Using loss rate (normalized) as objective 
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all

best

Using 𝜎𝑦 from pinhole camera as objective 

Beam loss rate is measured by monitoring the 

beam current change on a 6-second interval 

(no fitting). Noise sigma 0.04 mA/min. Data 

were taken at 500 mA with 5-min top-off.  

 

Initially all 13 skew quads were off.  

At 500 mA, the best solution had a lifetime of 

4.6 hrs. This was better than the LOCO 

correction (5.2 hrs) 

𝜎𝑦 noise level at 0.3 micron.  

All 13 skew quads were off initially. 

 

Pinhole camera resolution is limited.  
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• SPEAR3 

- Kicker bump matching,  

- Transport line optics and steering 

- Injection efficiency w/ sextupoles 

• LCLS  

- Undulator taper optimization 

• BEPC-II luminosity optimization  

- Steering and coupling 

- Interaction point beta 

• ESRF  

- beam lifetime w/ sextupoles 

- Injection steering 

 

Applications of RCDS on real-life problems 

X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)  

H. Ji, et al, Chinese Physics C 2015 Vol. 39 (12) 

J. Wu, K. Fang, X. Huang, 2014-2016 

S. M. Liuzzo, et al, IPAC’16, THPMR015 

Many other labs successfully applied RCDS in experiments 
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Online dynamic aperture optimization for SPEAR3 

X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)  

Optimizing injection efficiency with 

reduced kicker bump.  

Knobs: 8 sextupole knobs – each knob is 

a pattern of 10 sextupole families that do 

not change chromaticities.  

DA was increased from 15.1 mm to 20.6 

mm by optimization. Momentum aperture 

(MA) was not affected.  



23 X. Huang, Jan. 21-25, USPAS, Knoxville, TN 

LCLS taper profile optimization 

J. Wu, K. Fang, X. Huang, 2014 
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initial
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All solutions tried in first run.  

Knobs: 4 parameters that control the taper profile, two phase shifters.  

For U1-U8, and U10-U15: Kj = K0 (1 – a0 j ) with j = 1,…,15 

For U17-U33: Kj = K1 [1 – a1 (j - 16) – a2 (j – z2)
2] with j = 17,…,33. 

Objective: FEL photon beam intensity.  



SELF-SEEDING FEL OPTIMIZATION 

5.5 KeV Self-seeding FEL 
More than doubled 

U17-U32 continuous function: does 
not work well 

Zig-zag taper profile: ~ 1 mJ in 10 fs 

 

Starting 
point 

RCDS 
Optimization 

Knobs: 16 

parameters that 

control the taper 

profile. For U17-U32: 

each K is freely 

optimized with 

bounds. 

Objective: FEL 

photon beam 

intensity.  

by Juhao Wu, 9/1/2016 

X. Huang, Jan. 21-25, USPAS, Knoxville, TN 24 
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ESRF optimization of beam lifetime with sextupoles 

S. M. Liuzzo, et al, IPAC’16, THPMR015 

Lifetime for the 16-bunch mode in one month 

before and after optimization. 

Objective: lifetime normalized by current, bunch length, 

and vertical size (average over 13 beam size monitors) 
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• A Matlab RCDS package is available, with instructions and 

examples.  

• The setup for a new problem is extremely simple: 
- Modify an objective function template 

• Make changes to knobs and take measurement of performance 

• Record data 

- Modify a setup and launch script  

• House keeping: record initial parameters, set parameter ranges 

• Measure and specify noise level (only needed once) 

• Launch RCDS 

• Sort solutions and apply the best solution. 

The usage of the Matlab RCDS code 

--- S. M. Liuzzo, et al, IPAC’16 

A Python version has also been developed and is available. 
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• RCDS is not simply a variation of Powell’s method 
- Yes, RCDS is implemented as Powell’s method with the new robust line 

optimizer.  

- But in online application one seldom benefits from conjugate direction update 

because only limited directions are replaced.  

- It is the robust line optimizer that gives rise to the effectiveness of RCDS. 

• RCDS is not simple iterative parameter scan 
- It works with combined knobs. 

- Parameter scan usually have fixed scan ranges and pre-determined, uniform 

step sizes. Choice of step size (or # of steps) is problem dependent.  

- RCDS uses bracketing, variable step size, and quadratic fitting – a lot more 

efficient.  

- RCDS algorithm does not need problem-dependent setup.  

Some comments on RCDS 
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• Genetic algorithm is inefficient even without noise. 

 

 

 

 

• Noise gives a bias to the selection operation.    

Genetic algorithm (NSGA-II) 

Same SPEAR3 coupling correction 

simulation problem.  

Population: 100;  Ran 60 generations; 10% 

mutation, 90% crossover.  
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X. Huang et al, Nucl. Instr. 

Methods, A 726 (2013) 77-83.  
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• In PSO a solution is considered as a particle in the parameter space. The 

algorithm manipulates a group of solutions (fixed number) over many 

iterations 

- The solutions are updated by adding a velocity term, which is given by the 

past velocity, its distance to the best solution in its trajectory, and the distance 

to an overall best solution.  

Particle swarm optimization 

X. Pang, L.J. Rybarcyk, NIMA 741 (2014) 124 
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Genetic algorithm and particle swarm algorithm 

Online coupling correction with genetic algorithm 

Using beam loss monitor signal (low noise) as 

objective. It took 20,000 evaluations.  
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Genetic algorithm 
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Particle swarm algorithm 

Experiment by X. Huang, K. Tian (2014)  

Same setup as the genetic algorithm 

experiment. It took 3,000 evaluations.  

When online global search is desired, it seems the particle swarm algorithm is 
a better choice: (1) more efficient;  (2) no bias introduced by noise. 

… while RCDS only took 200 evaluations (see slide 17) for a much noisier setup.  
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• The ES method cycles parameters 

The Extremum Seeking (ES)* method 

*A. Scheinker, M. Krstic, IEEE Trans. Automatic Control, 58, 1107 (2013).  

A. Scheinker, M. Krstic, Systems & Control Letters, 63, 25 (2014) 

The optimization parameters (knobs) are 

rotated with various frequencies and 

amplitudes, and subject to modulation by 

the cost function.   
with 

noise 

At the high frequency limit, the behavior approaches that of a gradient descent 

method 

Pros: (1) noise is averaged out; (2) a simple and general framework; (3) can dynamically 

track the optimum.  

Cons: (1) algorithm control parameters are problem specific and need tuning; 

(2) may not be as efficient as other direct search method (e.g. RCDS, simplex); 

(3) Parameter update rate is bounded, but parameters are not.  



Illustration by A. Scheinker 

32 X. Huang, Jan. 21-25, USPAS, Knoxville, TN 

Test of the ES method on SPEAR3* 

The problem: injection kicker bump matching 

Knobs: pulse amplitude, width, and delay of K1 and 

K2, and two skew quads – 8 knobs total.  

Objective: residual oscillation of stored beam 

*A. Scheinker, X. Huang, J. Wu, SLAC-PUB-16508 (2016) 
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ES – dynamic tracking of the objective 

In this test one parameter (K3 voltage, not an optimization variable) is varied, while 

the ES algorithm serves as a feedback to make compensation.   

If there is no ES feedback 

The ability to maintain performance with a drifting system is 

important. 



34 X. Huang, Jan. 21-25, USPAS, Knoxville, TN 

• Bayesian optimization: use measured data and assumed prior probability 

model and  to construct a posterior probability model of the objective 

function, which is then used to guide further parameter space exploration.  

 
- Based on the posterior model (“surrogate function”), an acquisition function is 

defined. The next sampling point is decided by maximizing (or minimizing) the 

acquisition function. 

Bayesian optimization 

E. Brochu, v. M. Cora, N. de Freitas, “A tutorial on 

Bayesian optimization of …”, arXiv:1012.2599 (2010) 

M: prior probability 

P(E|M): probability of E under condition M 
Bayes’s theorem 

The acquisition function should strike a 

balance between exploitation and exploration.  

Example:  𝜇 + 𝜅𝜎 (upper confidence bound) 
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• A Gaussian process (GP) can serve as the prior model of 

objective function 
- GP is the Gaussian random distribution of functions which is given by the 

mean function and the covariance function 

 

 

 

- The posterior  model 

Bayesian optimization with Gaussian process 

Often assumed: 𝑚 𝐱 = 0, 

𝑘 𝐱, 𝐱′ = exp −
1

2
𝐱 − 𝐱′ 𝜽−2 𝐱 − 𝐱′ 𝑇 . 

Kernel matrix 

with 

Gaussian process optimization has been used on LCLS 

M. McIntire, et al, IPAC 2016; J. Duris, et al, HB2018 
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• Computer controlled systems can be optimized online 

without a model or knowledge of system interior. 

• Online optimization is challenging for algorithms due to noise 

and parameter space complexity 

• There are several algorithms workable for online optimization 
- The RCDS algorithm is a robust and efficient method for online optimization, 

tested on many accelerator problems.  

•  This is a fast developing area.   

Summary 


