
C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

USPAS 2015: East Brunswick, Rutgers 
 

 
Nonlinear Lattice Characterization: 

Dynamic Aperture, Momentum Aperture, 
Lifetime, Frequency Map Analysis  

 
 
 

Christoph Steier   
Lawrence Berkeley National Laboratory 

 

 
 
 
    

  



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Outline 
(Transverse) single particle dynamics often determines 
injection efficiency, lifetime, … 

– Motivation 
– Nonlinear Dynamics – Dynamic Aperture 

•  Tunescans 
•  Frequency Maps 
•  On energy dynamic aperture: Injection Efficiency 

– Lifetime limiting processes 
•  Momentum aperture: Touschek Lifetime 

– Summary 
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Motivation 
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•  Particles are lost in accelerators because of finite 
apertures, potentially limiting 
•  Injection efficiency, or 
•  Beam lifetime 

•  Limiting apertures can be physical or dynamic: 
•  Vacuum chamber → physical aperture 
•  Nonlinear single particle dynamics → dynamic (energy) 
aperture 

•  Loss process typically involves two steps: 
•  Scattering process (or injection) launching particles to 
large amplitudes outside core of beam 
•  Resonant or diffusive processes (nonlinear dynamics) 
leading to growth of oscillation amplitudes 
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What determines the momentum aperture? 
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Resonance effects in Accelerators 
U(ω) 

ω ω0

Q>1/2 

Q<1/2 
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•  Driven harmonic oscillator 
•   periodic excitations 
•  frequency of excitation determined by 

external source 

•  Betatron oscillations 
•  Excitation due to field error, fixed in 

space (and usually not time dependent) 
•  Excitation frequency is determined by 

oscillation frequency of beam particles 

•  Both result in similar driven 
resonances 
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Betatron Resonances 
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mν x + nν y = q
•  Resonances can occur when the 

tunes satisfy: 
 

•  Generally resonances are 
weaker the higher their order 

•  Integer resonances driven by 
dipole errors, half-integer by 
quadrupole errors, third-integer 
by sextupoles, … 

  where m, n and q are integers



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Resonances in Phasespace 
•  A quadupole perturbation  (i.e. kick linearly dependent 

on position) quickly increase betatron amplitude near 
half-integer resonance, sextupole perturbation (i.e. kick 
depends quadratically on position) drives third-integer 
resonance. 
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Tune shift with amplitude 

8 

0 2 4 6 8 10 12 14 16 18 20
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Ax [mm mrad]

Tu
ne

sh
ift

Horizontal Tuneshift 

Vertical Tuneshift 

14 14.05 14.1 14.15 14.2 14.25 14.3 14.35 14.4 14.45 14.5
8

8.05

8.1

8.15

8.2

8.25

8.3

8.35

8.4

8.45

8.5

Horizontal Tune

Ve
rti

ca
l T

un
e

Particle tune get shifted with amplitude 



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Tune shift with energy 
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•  Particle tune get shifted with particle energy/momentum – 
Chromaticity 

•  Sextupoles are used to correct Chromaticity (linear or low order) 
•  However, higher order terms often remain (even when using 

many sextupole families) 
•  Example: Double Bend Achromat, 2 sextupole families, +/-2% energy 

Without sextupoles With sextupoles 
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Benefits of Periodicity 

 
•  ALS consists of 12 sectors 

–  12-fold periodicity         Suppression of resonances 

Typical ALS Sector 

    mν x + nν y = 12 × q
  where m, n and q are integers
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Resonance Excitation 
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Resonances can lead to irregular and chaotic behavior for the 
orbits of particles which eventually will get lost by diffusion in 
the outer parts of the beam. 
 

Rule of thumb => Avoid low order resonances (<~ 12th for 
protons and <~ 4th for electrons) 
 

One can study the strength of resonances by using a tracking 
code or through measurements  
 

 => Tune scans 
 => Frequency Map Analysis 
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Tune scan 

13 

Developed by A. Temnykh (Proc. Of the IXth ALL-Union Meeting on Accelerators of Chaged 
Particles, Dubna, 1984, INP Peport No. INP 84-131 

 

When resonances are present they may change the distribution 
of the beam at large amplitudes. 

• In the case of a resonance island àparticles may get 
trapped at large amplitudes

Technique:
• By Introducing a scraper and a loss monitor

• Scan the tunes and measure the change in the count rate

scraper 
Radiation monitor 
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Tune scans (with and without large beta beating) 
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Profile measurement near 3rd order resonance 
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Profile measurement 

Horizontal phase space 
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KAM Theorem  
(the basis of frequency map analysis)  

According to the KAM (Kolmogorov-Arnold-Moser) 
theorem, in a phase space that is sufficiently close 
to an integrable conservative  system, many 
invariant tori will persist. Trajectories starting on 
one of these tori remain on it thereafter, executing 
quasiperiodic motion with a with a fixed 
frequency vector depending only on the torus.   
 
⇒ Measuring how quickly frequencies of particle 
motion change allows quantitative analysis of how 
irregular a trajectory is 
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Frequency Map Analysis 
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Developed by Jacques Laskar 

 
The frequency analysis algorithm (NAFF) is a postprocesser for  particle tracking data 
that numerically computes, over a finite time span, a frequency vector for any initial 
condition. 

  
 

    Frequency Map: Initial condition          Frequency vector 
 
 
 

Based on the KAM theorem, frequency map analysis determines whether an orbit 
is regular or chaotically diffusing. 
 
 
 
 

    Regular orbits                 Frequency vector remains fixed in time  
    Nonregular orbits           Frequency vector changes in time 
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Tunes and Diffusion Rates 
TRACKING CODE FREQUENCY ANALYSIS POSTPROCESSOR 

Track particle for N turns 

Compute horizontal and vertical tunes 
νx1 and νy1  

Track particle for another N turns 

Compute horizontal and vertical tunes 
νx2 and νy2  

+ 

Compute diffusion rates 
 
 
 
 
 

   ∂νy

∂τ ≈
νy 2 – νy1

N

   ∂νx
∂τ ≈

νx2 – νx1

N
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Frequency Map Analysis 
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Vertical orbit diffusion – On-energy example 

20 

  
Particle are lost in the vertical plane 

•  via nonlinear coupling and diffusion of the trajectory.  
 
 
 
 
 
 
 
 
 
 
 
 
Example : Particle launched at 12 mm horizontally and 1 mm 
vertically and tracked with damping and synchrotron oscillations. 
(Simulated injection) 
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Frequency Map Analysis 
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Experimentally (Frequency Map 
Analysis): 

Kick beam to multiple 
amplitudes 

Measure position turn-by-turn 

Calculate oscillation frequency 

Electromagnetic Beam Position Monitors 
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Measured Frequency Map 

23 



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Fast Decoherence Problem for Experiment 
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•  Detuning with amplitude 
causes very fast 
decoherence for larger 
amplitudes 

•  Individual particles are 
still oscillating with 
same amplitude 
(radiation damping time 
>10k turns) 

•  Makes frequency 
analysis difficult 
–  Small number of turns 
–  Signal not quasiperiodic 



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Measured Frequency Map/Beam Loss 

•  Partial Beam Loss mostly if particles have to pass (radiation damping)  
through resonance intersection 

•  Isolated resonances not dangerous. 
Side remark: Spectra contain more information than just fundamental 

frequencies – other resonance lines – resonance strength versus 
amplitude (see resonance driving term lecture). 

25 



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Model independent evaluation of dynamics 
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•  Frequency map 
analysis allows 
to model 
independently 
evaluate how 
regular beam 
motion is 
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Related Problem: Injection Efficiency 
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Lifetime: Introduction 

28 

• Beam often needs to be stored for as long as 
possible (stability, flux, luminosity), making lifetime a 
key performance parameter  
 
•  Important scattering processes dominating beam 
lifetime include: 

•  elastic and inelastic gas scattering, intra beam 
scattering, quantum lifetime (SR), tune resonances, etc. 
•  They can increase particle oscillation amplitudes (e.g. 
scattering, diffusion) ultimately leading to particle loss on 
physical apertures. 

  
•  Damping and excitation play major role in the lepton case.  
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Definition of Lifetime 
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•  In a loss process, the number of particles lost at the time t is 
proportional to the number of particles present in the beam at the 
time t: 

•  By defining the lifetime τ as: 

•  From the last equation, one can see that the lifetime is defined as 
the time required for the beam to reduce its number of particles to 1/
e of the initial value. 

•  Lifetime due to the individual effects (gas, Touschek, …) can be 
similarly defined. The total lifetime will be then obtained by summing 
the individual contributions: 

•  With this definition, the problem of calculating the lifetime is reduced 
to the evaluation of the single lifetime components. 



C. Steier, Beam-based Diagnostics, USPAS 2015, 2015/6/22-25 

Example Lifetimes in Real Accelerators 

30 
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Lifetime in different accelerator types 

•  In proton and heavy ions storage rings no damping is 
present: Any perturbation can build up and can eventually 
lead to particle loss. 
–  Important electron loss mechanisms are negligible for protons: 

Touschek + inelastic gas scattering, quantum lifetime. 
–  But other effects such as elastic gas scattering, molecule excitation, 

fluctuations in the magnetic and RF fields, Coulomb scattering 
(intra-beam scattering), …, add up to generate a lifetime of the order 
of typically hundreds of hours. 

•  In synchrotron light sources Touschek scattering usually 
dominates and leads to lifetimes of a few hours. 

•  In colliders, the interaction between the colliding beams, the 
so-called beam-beam effect, often becomes the main 
mechanism of losses. 

 
31 
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•  Electron-Photon Scattering

•  Quantum Lifetime

•  Electron-Gas Scattering

•  Gas Lifetime

•  Electron-Electron Scattering

•  Touschek Lifetime

 Some types of scattering events 
influencing beam lifetime 

32 

bending magnet 

Beam direction 
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 Quantum Lifetime 

Beam distribution, W(x)
Quantum Lifetime versus 
aperture-to-beamsize ratio

33 

•  Emission of synchrotron radiation is 
quantized
•  Transverse distribution of radiation 

is approximately Gaussian
•  A Gaussian distribution of particles 

is produced
•  Tails of distribution are lost

•  Redistribution on time scale of 
damping time
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Particles scatter elastically or inelastic 
with residual gas atoms. This introduces 
betatron or synchrotron oscillations. 

Gas-scattering lifetime 

34 

Beam direction 

The scattering process can be described 
by the classical Rutherford scattering with 
differential cross section per atom in cgs 
units  
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Gas-scattering lifetime 

35 

If the new amplitudes are outside the aperture the particles are 
lost.  
  
• The elastic scattering lifetime is proportional  
to the square of the transverse aperture A:  
 
 
 
•  The inelastic scattering lifetime is proportional 
to the logarithm of the energy/momentum aperture ε: 
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Gas Lifetime – Vacuum Requirements 
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•  For electrons one can simplify the formulas for gas Bremsstrahlung lifetime (in 
the approximation of <Z2> ~ 50): 

•  In the same approximation, the elastic gas scattering lifetime becomes: 

•  For typical electron ring parameters, one finds that the requirement on vacuum 
is for dynamic pressures of the order of a few nTorr. 
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Particles inside a bunch perform transverse 
betatron oscillations around the closed orbit. If two 
particles scatter they can transform their 
transverse momenta into longitudinal momenta. 
 
 
 
 
 
 
• The first observation was done in the early 60’s 
in Frascati at ADA, the electron-positron 
accelerator conceived by the Austrian scientist 
Touschek. 
• The Touschek effect is the dominant lifetime 
contribution in many modern electrons storage 
rings. 

Touschek Lifetime 

37 

Beam direction 
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Touschek Scattering 

38 

•  Large angle electron-electron scattering 
→ single scattering leads to loss 

•  Calculate scattering cross-section: Møller cross section, which 
reduces to 

•  Above formula is correct for non relativistic velocities (in restframe of 
particle bunch) and if there is no average polarization

•  In reality effect of polarization not negligible (see my talk on 
energy calibration)

•   If the new momenta of the two particles are outside the momentum 
aperture, ε , the particles are lost. The lifetime is proportional to the 
square of ε
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•  move scraper into beam and record lifetime: acceptance, gas pressure 

Assuming different distribution of the gas, i.e. higher pressure in the straight sections: 3*10-10 mbar 
Desorption coefficient:  1.75*10-12 mbar/mA 
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Touschek lifetime scans 

•  Calculate RF voltage dependent Touschek lifetime based on 
calibrated machine model (emittance, beamsized, lattice function, s-
position dependent dynamic momentum aperture all calculated from 
calibrated model) 

•  Compare measurements (green errorbars) with those calibrated 
calculation 

–  Excellent Agreement 

40 
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Off-energy dynamics: Touschek 
Lifetime 

41 

•  Lifetime is crucial performance parameter for light sources ⇒ 
for  3rd generation light sources limit is Touschek lifetime ⇒ 
strong function of momentum aperture ε  

•  Momentum aperture ε  is often limited by single particle 
dynamics 

•  3rd generation light sources with their strong focusing to 
achieve small equilibrium emittances (small dispersion) and 
very strong sextupoles did originally not achieve their design 
momentum apertures of about 3%.
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What determines the momentum aperture 

42 
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Longitudinal variation of momentum aperture 

43 

•  Because of variation in 
H-function, momentum 
aperture will vary 
around the ring 
(depending on 
scattering location) 

•  Not necessarily 
symmetric for positive 
and negative 
momentum deviation 
(asymmetric bucket) 
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ALS example: RF amplitude 
scan 

44 

•  Momentum aperture in ALS is clearly impacted by 
dynamics 

•  Sensitivity to chromaticity is at first surprisingly large 
(sextupole strength only different by a few percent). 
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Touschek Scattering – Tune Shift – Particle Loss 

45 

•  Particle losing/gaining energy – horiz. oscillation (dispersion/H-function) + long. 
Oscillation 

•  Particle changes tune 
–  Synchrotron oscillations (chromaticity) 
–  Radiation damping (detuning with amplitude and chromaticity) 

•  During damping process particle can encounter region in tune space where motion 
gets resonantly excited. 
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Measurement principle 

46 

•  Experimentally very difficult to exactly simulate Touschek scattering 
(simultanous kicks) – also difficult to measure tunes during synchrotron 
oscillations 
–  Some positive results (Y. Papaphilippou  et al.) 

•  Still possible to locate loss regions when scanning only transverse 
amplitude while keeping energy offset fixed 
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Measurement Detail 
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•  Use single turn kicker to excite beam with increasing 
amplitude 

•  Use current monitor to record relative beam loss after kick 
•  Use turn-by-turn BPMs to record oscillation frequencies 
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Aperture Scan for 3 Different Chromaticities 

48 

ε > 3 % straight         ε = 2.6 % straight        ε = 2.6 % straight 
      2.65 % arcs              1.75 % arcs                    1.9 % arcs             

Small horiz. Chromaticity   Small horiz.          Large horiz. 
Small vert.                            Large vert.            Large vert. 
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Aperture Scan for 3 Different Chromaticities 

49 

ε > 3 % straight         ε = 2.6 % straight        ε = 2.6 % straight 
      2.65 % arcs              1.75 % arcs                    1.9 % arcs             

Small horiz. Chromaticity   Small horiz.          Large horiz. 
Small vert.                            Large vert.            Large vert. 
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Results agree well with Simulations 
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•  Simulations reproduce shift of beam loss area 
caused by the coupling resonance to higher 
momentum deviations 
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Lifetime vs. Vertical Physical Aperture 
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•  Found dynamic+momentum ‘aperture’ and (small) vertical physical 
aperture very closely linked – for ALS momentum aperture collapses 
around 40-50 σy 

•  Since both are very important performance parameters studied link 
further:  

•  Performance (Brightness) of 
undulators/wigglers (both permanent 
magnet and SC) depends on 
magnetic gap 
•  Strong incentive to push physical 
aperture as low as possible 
•  Evolution at the ALS from 15 mm 
via 9 and 8 mm to now 5.5 mm – 
enabled by better understanding and 
optimization 
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Summary: Lifetime Limiting Processes 

•  Elastic Scattering 

•  Touschek  Effect 

•  Quantum Lifetime 

•  Inelastic Scattering 
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Summary (Lifetime) 
•  Lifetime limiting processes are one main 

performance limitation for accelerators 
•  Particle scattering (gas, intra beam, inter beam, 
…) usually launches particles to large amplitudes 
leading to particles loss 

•  Understanding the Nonlinear Dynamics that 
affects the motion of this large amplitude particles 
is essential to quantify these processes  
–  And be in a position to improve things, i.e. make beam 

lifetimes longer 

53 
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Backup Slides 
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Tune scan summary 

56 

Advantages 
 

Quickly and sensitively see excited resonances in the tails and core 
of the beam as a function of different tunes 
 

Disadvantages 
 

Probing different machines and not looking at the effect of 
resonances on one working point and at different amplitudes. This 
is what one really would like to see. 
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Full Frequency Maps for ALS 5cm period EPU 

•  Frequency maps agree well with simulated ones 
–  Higher order detuning with amplitude 
–  Additional resonances excited 
–  Reduced dynamic aperture 
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Frequency map measurements at BESSY-II 

•  Beam dynamics highly dependent on EPU row phase. 
•  Dynamic aperture reduction induced injection losses 

Vertical field Circular polarization Horizontal field 

P. Kuske 
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Constant Lifetime? 
•  The previous model assuming constant lifetime is often too simple 

for describing real accelerators. In most of the electron storage rings 
the lifetime actually depends significantly on current: 
–  The Touschek effect (discussed later), whose contribution 

dominates the losses in many of the present electron 
accelerators, depends on current. When the stored current 
decreases with time, the losses due to Touschek decrease as 
well and the lifetime increases. 

–  Synchrotron radiation intensity and therefore the release of 
molecules trapped in the vacuum chamber wall depends on 
current (gas desorption). 

•  For higher currents, the pressure in the vacuum chamber 
increases (dynamic pressure) resulting in more scattering of 
the beam with the residual gas and a reduced lifetime. 

•  For reasonably small variations of the current, the constant lifetime 
assumption is locally valid and it is widely used. 
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Dependency of Lifetime on Transverse Aperture 
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Dependency of Lifetime on Momentum Acceptance 
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Lifetime versus RF-Bucket Height 
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Motivation for off-energy dynamics studies 

•  Design momentum aperture for newer light 
sources (like Soleil) 5-6% to achieve reasonable 
lifetimes 

•  Even using top-up (quasi continous) injection, 
lifetime is still an issue: 
–  Radiation damage/safety 
–  Injection transients are not fully transparent 
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Coupling – Sensitivity to Physical Aperture 

•  Sensitivity of Touschek lifetime on vertical aperture depends on 
coupling 

•  High order coupling resonances scale similar to global/local coupling 
•  For given emittance ratio one can optimize coupling vs. vertical 

dispersion 
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Simulation Results (Momentum Aperture – Gap) 

•  Tracking results are in good agreement with measured 
effects, i.e. case with dispersion wave has less yellow and 
orange areas than the one with excited coupling resonance, 
indicating less sensitivity to reduced vertical aperture  
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Emittance increased using vertical dispersion wave …  using excitation of coupling resonance 


