Introduction to Matlab Middle Layer

Xiaobiao Huang

Based on an earlier version by Christoph Steier and Greg Portmann.

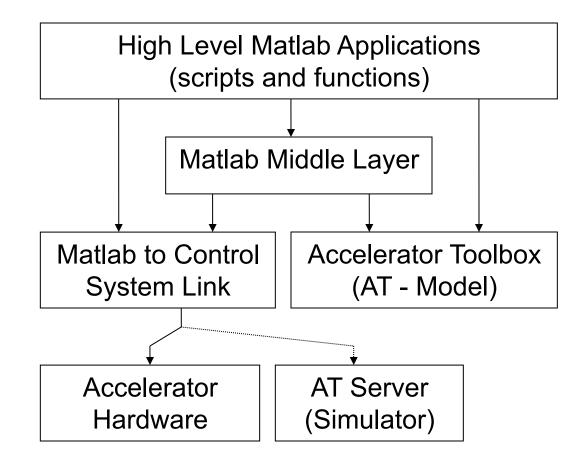
USPAS 2015 Summer – Beam Based Diagnostics

June 22-26, 2015

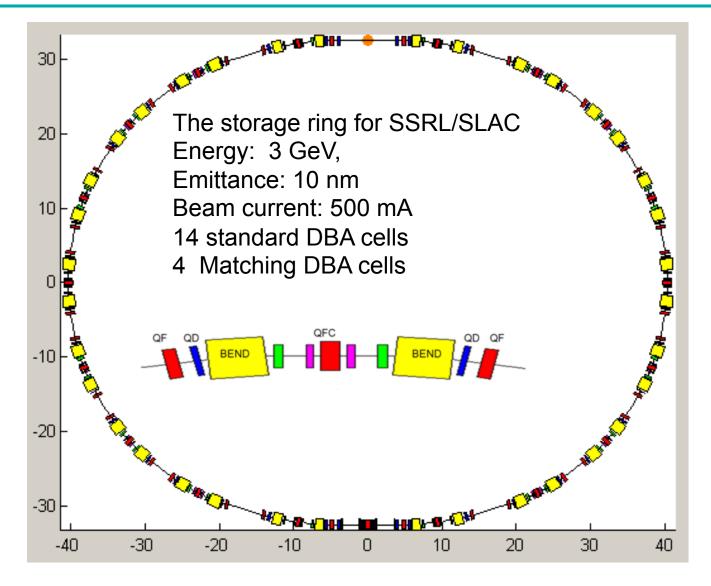
X. Huang, USPAS, New Jersey

Matlab Middle Layer (MML)

- Goals of MML: automating accelerator physics experiments
 - Develop an easy scripting environment to experiment with accelerators (accelerator independent)
 - Remove the control system details from the physicist (like channel names and how to connect to the computer control system)
 - Easy access to important data (offsets, gains, rolls, max/min, etc.)
 - Integrate simulation and online control.
 - Integrate data taking and data analysis tools
 - Develop a software library of common tasks (orbit correction, tune correction, chromaticity, ID compensation, etc.)
 - Develop high level control applications to automate the setup and control of a storage ring.


History of MML

- Development of Matlab Middle Layer started >13 years ago at ALS
 - Greg Portmann, Winfried Decking, David Robin, Christoph Steier
- Other accelerators had similar requirements and went similar (or somewhat different) routes
 - APS Tcl/TK
 - ELSA EPOS and later Matlab
 - DESY Matlab
- Later on AT (Terebilo, et al.) and LOCO (Portmann and Safranek) were ported to Matlab (from pascal and fortran) and combined with middle layer and many controls interfaces other than EPICS were added
- Now very widely used at more than ½ of 3rd generation light sources and some colliders (in some cases only LOCO, not full middle layer)


Why Matlab

- Matrix programming language
- Extensive built-in math libraries
- Active workspace for experimentation and algorithms development
- Easy of import/export of data
- Graphics (easy presentation of data)
- Compact code and good readability
- Adequate GUI capabilities
- Platform Independent

- MiddleLayer
 - 1. Link between applications and control system or simulator.
 - 2. Functions to access accelerator data.
 - 3. Provide a physics function library.
- High Level Applications
 - Within the standard MML distribution
 - Additional applications that are built upon MML.
- LabCA, MCA, SCAIII Matlab to EPICS links
 - Other control systems can be linked, too.
- AT Accelerator Toolbox for simulations
- LOCO Linear Optics from Closed Orbits (optics calibration)

The SPEAR3 storage ring (used in examples)

Basic calling syntax for accessing the control system

There are many shortcut functions: getam, getsp, setsp, getbpm, getx, gety, getrf, getdcct, gettune, etc

June 22-26, 2015

X. Huang, USPAS, New Jersey

SPEAR3 Family Names

Families

Bend magnets – BEND, BDM Quadrupoles – QF, QD, QFC,Q[DF][XYZ],Q9S Sextupoles – SF, SD, SFM, SDM Skew quadrupoles - SkewQuad Correctors – HCM, VCM Beam position monitors – BPMx and BPMy Other - RF, DCCT, TUNE, etc

Fields

Setpoint, Monitor, Status, CommonNames, DeviceList, ElementList, Position, etc...

Getting around with families, device lists, channel names channel2dev – convert channel names to device list channel2family – convert family to channel names dev2elem – convert element list to device list elem2dev – convert device list to element list family2channel – convert family to channel names

The database structures

The Accelerator Object (AO) ---- getao

• Store family information related to the control system

•Get/Set: getfamilydata / setfamilydata

The Accelerator Data (AD) ---- getad
 Store Middle Layer setup variables
 Get/Set: getfamilydata / setfamilydata

The Physics Data (PhysData)

•Store physics related data (in a file)

•Get/Set: getphysdata / setphysdata

AcceleratorObject.(Family)

FamilyName: Family Name ('BPMx', 'HCM', etc.) (must be unique)
MemberOf: Cell array of strings, for instance {'MachineConfig'; 'PlotFamily'; 'QUAD'; 'Magnet'}
Status: 1 for good status, 0 for bad status
ElementList: Column vector
Monitor: Structure shown below
Setpoint: Structure shown below
CommonNames: String matrix of common names
Position: Column vector of longitudinal position along the ring [meters]
AT:Structure for the AT simulator (optional)

- Make the model the default
 > switch2sim
- Make the accelerator the default
 > switch2online
- Mixed mode use keyword overrides

'Simulator' – Run the same code as online just use the AT model for input/output.

'Model' – Some code uses the AT model more directly (like measbpmresp or measchro)

Note: 'Model' and 'Simulator' are often the same.

example: getam('BPMx',[1 1], 'Physics', 'Model')

Switch Between Hardware and Physics Units

Hardware units: the units used in the control system (engineering units), such as ampere, MHz, mm.

Physics units: the units used in accelerator physics (models), such as radian, 1/ m² (K1 for quads).

- Make the hardware units the default
 > switch2hw
- Make the physics units the default
 > switch2physics
- Mixed mode use keyword overrides

'Hardware' – Force hardware units for this function. 'Physics' – Force physics units for this function.

Example:

>> Amp = getpv('QF', 'Hardware');
>> K = getpv('QF', 'Physics');

- Beam Position Monitors
 - Channel names, gains, roll, crunch, offsets, golden, standard deviations
- Magnets
 - Channel names, gains, offsets, roll, setpoint-monitor tolerance, amp-to-simulator conversions, hysteresis loops, max/min setpoint
- Response matrices (Orbit, Tune, Chromaticity)
- Lattices (Save and restore machine configurations)
- Measurement archiving
 - Dispersion, tunes, chromaticity, quadrupole centers, response matrices, etc.

Data are saved in pre-specified locations. When operational data files are updated, old files are backed up with time stamps.

Machine Physics Functions

There are hundreds of functions for accelerator control, monitoring and data analysis

- setorbit general purpose global orbit correction function
- setorbitbump general purpose local bump function
- settune sets the storage ring tune
- setchro sets the storage ring chromaticity
- measchro measure the chromaticity
- measdisp measure the dispersion function
- quadcenter, quadplot finds the quadrupole center
- physcis2hw converts between physics and hardware units
- measbpmresp measure a BPM response matrix
- measlifetime computes the beam lifetime
- minpv/maxpv min/max value for family/field
- srcycle standardizes the storage ring magnets
- scantune scan in tune space and record the lifetime
- scanaperture scans the electron beam in the straight sections and monitors lifetime
- finddispquad finds the setpoint that minimizes the dispersion in the straight sections.
- rmdisp adjusts the RF frequency to remove the dispersion component of the orbit by fitting the orbit to the dispersion orbit
- etc

- Magnet lattice save / restore / configuration control
- Energy Ramping
- Slow orbit feedback
- Insertion device compensation
- Quadrupole centering
- Display (plotfamily) / Diagnostics
- LOCO (Response matrix analysis)

plotfamily

Fil		-	AR3 - Stora Graph #2		nittance Optics (10)	nm-rad)	(Model)				
	е <u>сок</u> 1	Graph #1	. Graph #2	THESE MENUS RUN IN THE MATLAB WINDOW (Not Part of the PlotFamily Application)						+1.663733e-002 Mea +2.114989e-001 RMS 1BPM1= +1.2969e-00	3
		ŀ	A	Initialization		•				18PM4- +2 36620-00	
	ਵੂ ^{0.5}		·····/	Lattice Configuration		<u> </u>		e to Present Lattice			
	0.5 			Correct the Orbit		•	Standardize to Golden Lattice - srcycle('Golden') Standardize to User Selectable Lattice File - srcycle('')				
i	ŝ	ŀ		Correct the Tune Correct the Chromaticity LOCO Measure		• •	Load the Golden Lattice and Set to Machine - setmachineconfig('Golden')				
ĩ	ā -0.5		·t			•					
	-1	<u> </u>				•	Load the Injection Lattice and Set to Machine - setmachineconfig('Inj Load a Lattice from File and Set to Machine - setmachineconfig				
	- 1					•	Save Lattic	Golden')			
		•	ŧ₩ ŧ₩₩	Monitor			Save Lattice to the Injection File - getmachineconfig('Injection')				
				Plotting and Analysis		<u> </u>	Save Lattice to File - getmachineconfig('Archive',")				
	0.01			Model Functions		•	-			1BPM4= +0.0000e+0	
_	0.005	<u> </u>		Export to Works	;pace	•				1BPM7= +0.0000e+0	0(
шш	0.000	-		New Operational Files		•			-	2BPM1= +0.0000e+0	
3PMy [mm]				• • • • • • • •	• • • • • • • • •		• • • • • •	• • • • • • • • •	• • • • • • • • • • - •	2BPM4= +0.0000e+0 2BPM6= +0.0000e+0	
۲'n	-0.005	L								3BPM1= +0.0000e+0	0(
ш	-								-	3BPM4= +0.0000e+0 3BPM6= +0.0000e+0	
	-0.01										•
		0		50	100		150	2	200		_
Trigger Zoom One Shot Graph 1 ^ Continuous Vertical v 7:41:21 PM Horizontal <>				Auto Scale	Trace 1 CACB • A Trace 2 • C CACBCA		Channel A Monitor Golden Offset / SP Saved Data File	Channel B C Monitor C Golden C Offset / SP C Saved Data C File	Save Data		

% Create an Orbit Error vcm = .25 * randn(73,1); % 73 vertical correctors at the ALS setsp('VCM', vcm);

% Get the vertical orbit Y = getam('BPMy');

% Get the Vertical response matrix from the model Ry = getrespmat('BPMy', 'VCM'); % 122x73 matrix

% Computes the SVD of the response matrix lvec = 1:48; [U, S, V] = svd(Ry, 0);

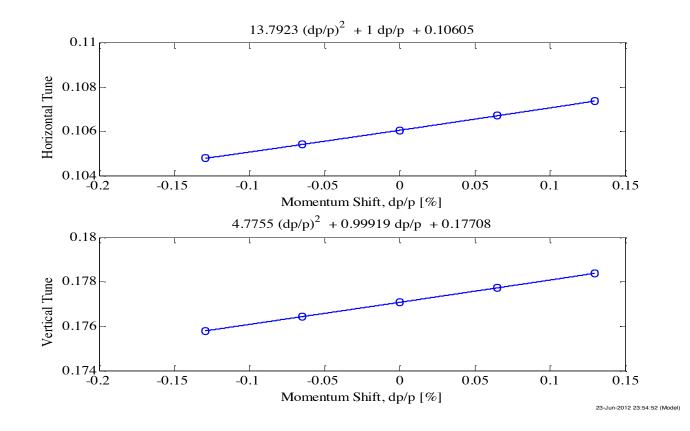
% Find the corrector changes use 48 singular values DeltaAmps = -V(:,Ivec) * S(Ivec,Ivec)^-1 * U(:,Ivec)' * Y;

% Changes the corrector strengths stepsp('VCM', DeltaAmps);

Tune Measurement and Correction

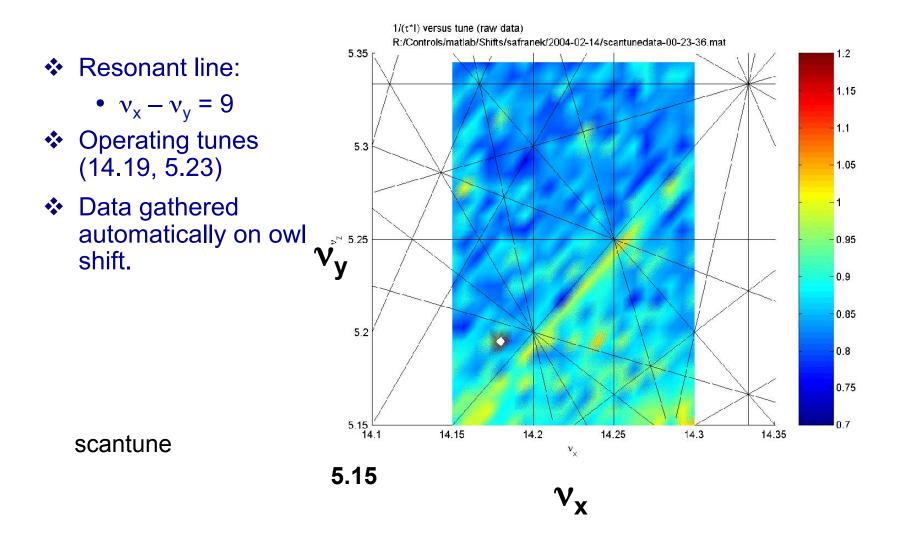
```
% Measure the tune (just to check the result)
Tune1 = gettune;
```

```
% Get the chromaticity response matrix for SF and SD
m = gettuneresp; % Default (used by settune, steptune)
m = gettuneresp('Model'); % Model
```


```
% Compute the delta QF and QD and apply the correction
DeltaAmps = inv(m) * [-.05; .05];
setsp({'QF', 'QD'}, {getsp('QF')+DeltaAmps(1), getsp('QD')+DeltaAmps(2)});
```

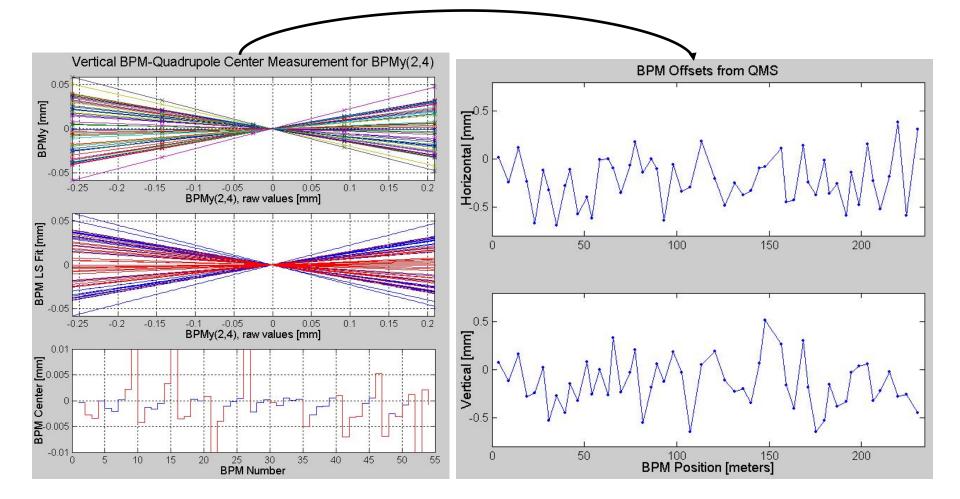
```
% Measure the chromaticity and check result
Tune2 = gettune;
DeltaTune = Tune2 - Tune1
```

The above tune change can be done with


```
% step the tune
steptune([-.05; .05];);
```

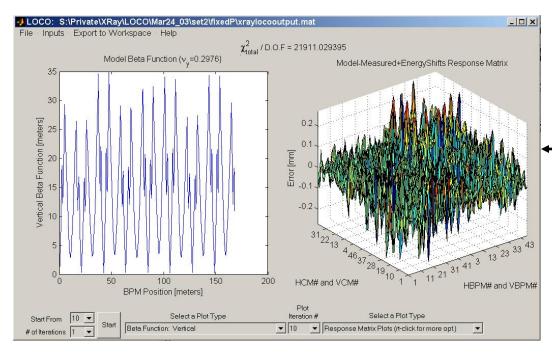
Chromaticity Measurement and Correction

measchro measchroresp plotchro setchro stepchro getchro getchroresp


Lifetime vs. Tunes

June 22-26, 2015

X. Huang, USPAS, New Jersey

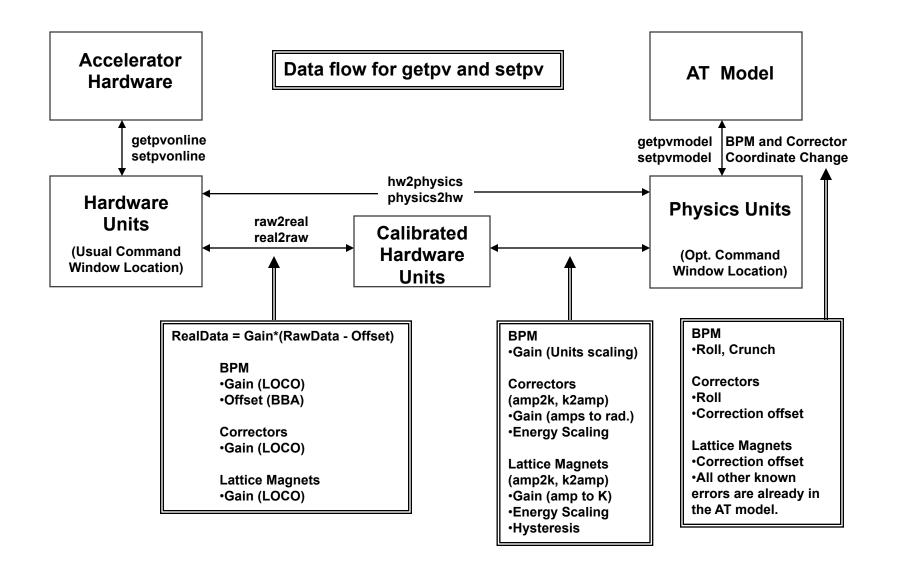

Beam-based alignment (quadrupole centering)

X. Huang, USPAS, New Jersey

LOCO Optics Analysis

- Calibrate/control optics using orbit response matrix
- Determine quadrupole gradients
- Correcte coupling
- Calibrate BPM gains, steering magnets
- Measure local chromaticity and transverse impedance

New MATLAB version of code


- rewritten from FORTRAN
- linked to control system
- linked to AT simulator

Outline of computer lab sessions

- Monday
 - Matlab Middle Layer (MML)
 - Orbit correction
 - Beam based alignment
- Tuesday
 - Turn-by-turn BPM data analysis
- Wednesday
 - Optics and coupling correction with LOCO
- Thursday
 - Online optimization with RCDS and other algorithms

Matlab scripts and accompanying instructions are provided for each session. Open the scripts and follow the instructions.

MiddleLayer Data Flow Diagram

