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How to make a machine work? 

• For a complex machine such as an accelerator to work 

well, typically it requires 

– A model of the machine 

• Specify the ideal working conditions 

– At the physics model level, working conditions may include 

magnet strengths, ideal orbit, RF voltage and phase, etc. 

• Predict performance 

• Predict response of performance w.r.t. working conditions. 

– Diagnostics 

• Monitor the working conditions and detect deviations. 

– Adjustable parameters – knobs 

• Restore or compensate the deviations in the working conditions 
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knob 

monitor 

A simple case: 



Scenarios when things don’t go well 

• Model is not accurate  

– Effects not included the model 

• Example: fringe fields, insertion device effects 

– Imperfections in the machine 

– Model specified working conditions are not ideal. 

– Examples: 

• Linear optics error due to misalignment of magnets, magnet calibration 

errors, magnet fringe field effect, insertion device imperfections.  

• Similarly for nonlinear optics errors 

– Solution: calibrate the model with beam based measurements (e.g. 

LOCO) 

• Lack of diagnostics 

– Example: transport line steering and optics 

• Lack of effective correction methods 

– Example: optics correction before LOCO 
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Automatic tuning (online optimization) 

• When model specified solution doesn’t give the optimal 

performance, “tuning” of the machine is necessary.  

• Manual tuning  

– Not scalable to large problems (with # of knobs ≥ 4?) 

– Not efficient (evaluation of solution is slow; multi-variable search 

algorithm not efficient) 

• Automatic tuning* 

– Essentially an optimization problem 

– Requirements:  

• dealing with noise in functions.  

• efficient 

– Questions: what algorithms are suitable for automatic tuning.  
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*First attempt of automatic tuning in accelerator is by L. Emery (APS), PAC03. 

Algorithms tried were 1D scan and downhill simplex. 



Candidate optimization algorithms 

• Parameter scans 

• Gradient based algorithms 

• Downhill simplex algorithm 

• Powell’s method (conjugate direction set method) 

• Robust conjugate direction search (RCDS) 

• Stochastic methods (more assurance for finding global 

optimum) 

– Simulated annealing 

– Genetic algorithms 

– Particle swarm optimization 
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Parameter scan 

• 1D scan: evaluate the function at parameter values equally 

distributed in a given range.  

• Iterate through multiple parameters. 

 

 

 

 

• Advantage 

– Samples the 1D parameter range globally. 

• Disadvantages 

– Inefficient: evaluate solutions in areas of no interest 

– Inefficient: the search directions are in general not independent. 

– Scan setup (range, number of steps) is problem/parameter 

dependent. 

 

 

 

 

 

 

 

June 22-26, 2015 X. Huang, USPAS, New Jersey 6 



Gradient-based methods 
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𝑓 𝒑 ≈ 𝑓 𝒑0 +
𝜕𝑓

𝜕𝒑
𝒑0 ⋅ Δ𝒑 +

1

2
Δ𝒑′ ⋅ H 𝒑0 ⋅ Δ𝒑 

At the minimum 
𝜕𝑓

𝜕𝒑
𝒑𝑚 =

𝜕𝑓

𝜕𝒑
𝒑0 +H 𝒑0 ⋅ Δ𝒑=0, Δ𝒑 = 𝒑𝑚 − 𝒑0, which leads to 

H 𝒑0 ⋅ Δ𝒑 = −
𝜕𝑓

𝜕𝒑
𝒑0  

At each solution, solve for Δ𝒑 to determine the next solution 𝒑0 + Δ𝒑 (Gauss-

Newton method) 

Expanding the objective function at the present solution: 

Advantages: fast convergence. 

Disadvantages:  

(1) Requires the evaluation of the first and second order derivatives. 

(2) Noise in the function introduces large errors to finite difference calculation. 

(3) Solution Δ𝒑 can be unrealistic if the approximation of 𝑓 is too far off (can be 

remedied with trust region approach). 

We don’t consider gradient based methods for online optimization because of 

noise in online function evaluation.  

Hessian matrix 

𝐻𝑖𝑗 =
𝜕2𝑓

𝜕𝑝𝑖𝜕𝑝𝑗
 



Downhill Simplex Algorithm 

• The downhill simplex algorithm is known for being a robust 

optimization method. 

• For an 𝑁-variable problem, an 𝑁 + 1 vertex geometric body 

(a simplex) is manipulated with a few operations.  
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initial 

New<low 

New>2nd  high 

New>2nd  high 

Advantage: efficient, simple to use. 

Disadvantages: doesn’t work when noise in function alters comparison results of 

simplex vertices.  
J.A. Nelder, R. Mead, Computer Journal vol 7, pp 308 

W. H. Press, et al, Numerical Recipe, 3rd ed, (2007) 



Powell’s conjugate direction set method 

• Powell’s method has two components: 

– A procedure to update the direction set to make it a conjugate set 

– A line optimizer that looks for the minimum along each direction 
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*M.J.D. Powell, Computer Journal 7 (2) 1965 155 

Conjugate direction set: 𝒖𝑖 , 𝑖 = 1,2, ⋯ , 𝑁𝑝 

in which for any 𝑖 ≠ 𝑗, it satisfied that  

𝒖𝑖 ⋅ H ⋅ 𝒖𝑗 = 0 

Search of optimum along one direction does not alter the previous search 

results along the conjugate directions (hence efficient).  

𝒖1 

𝒖2 



Line optimizer 
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Line optimizer: start from the present solution 𝒑0, along direction 𝒖, minimize 

function 𝑔 𝜆 = 𝑓(𝒑0 + 𝜆𝒖). 

Golden section search 

W. H. Press, et al, Numerical Recipe, 3rd ed, (2007) 

Parabolic interpolation. 

First bracket the minimum (with a center point below two outside ones). 

Iteratively reduce the bracket size with additional intermediate point.  

Both algorithms suffer from noise as it alters comparison results. .  



The robust line optimizer of RCDS 

Step 1: bracketing the minimum with noise considered.  

Step 2: Fill in empty space in the bracket with solutions and perform quadratic 

fitting. Remove any outlier and fit again. Find the minimum from the fitted curve.  

Global sampling within the bracket helps reducing the noise effect.  

RCDS  is Powell’s conjugate method* + the new robust line optimizer.  

*however, since the online run time is usually short, it is important to provide good an 

initial conjugate direction set which may be calculated with a model.  
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X. Huang, et al, NIMA 726 (2013) 
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multi-objective optimization: comparison of solutions 

X. Huang, USPAS, New Jersey 

Problem:   minimize 𝑓𝑚(𝒙), 𝑚 = 1,2, … , 𝑀 with parameter ranges 𝑥𝑖 ∈ [𝑥𝑖
𝐿, 𝑥𝑖

𝑈] 
 

Comparison of two solutions (definition of domination): Solution 𝑥𝑎 dominates 

solution 𝑥𝑏 if for all 𝑚 = 1,2, … , 𝑀, we have 𝑓𝑚 𝑥𝑎 ≤ 𝑓𝑚(𝑥𝑏) and for at least one 

objective 𝑚′, 𝑓𝑚 𝑥𝑎 < 𝑓𝑚(𝑥𝑏). 

 

Pareto front: the set of all solutions in the search space that are non-dominated by 

any solutions.  

  

Goal of multi-objective optimization is to obtain the Pareto front for further 

analysis.  

𝑓1 

𝑓2 
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A multi-objective genetic algorithm (MOGA): NSGA-II 

• NSGA (non-dominated sorting genetic algorithm)–II  

13 X. Huang, USPAS, New Jersey 

K. Deb, IEEE Transtions On Evolutionary Computation Vol 6, No 2,April 2002  

Selection (of parents) 

Crossover  

Mutation 
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Application of NSGA-II: injector optimization (Cornell ) 
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Decision variables: 

 

I. Bazarov, PRSTAB 8, 034202, (2005)  
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Multi-objective particle swarm optimization (MOPSO) 
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X. Pang 

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1     

𝒗𝑖
𝑡+1 = 𝑤𝒗𝑖

𝑡 + 𝑐1𝑟1 𝒑𝑖
𝑡 − 𝒙𝑖

𝑡 + 𝑐2𝑟2(𝒈𝑡 − 𝒙𝑖
𝑡)  

 

𝒙𝑖
𝑡 position (parameter vector) of particle 𝑖 at iteration 𝑡. 

𝒗𝑖
𝑡 velocity (increment) of particle 𝑖 at iteration 𝑡. 

Control parameters: 𝑤 = 0.4, 𝑐1 = 𝑐2 = 1. 
𝑟1,𝑟2 are random within [0, 1] or fixed values.  

Updating particle population in an iteration 

MOPSO can also include mutation operation. 

MOPSO also manipulates a population of solutions over many iterations 

with random operations.  

X. Pang, L.J. Rybarcyk, NIMA 741 (2014) 
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Comparison of MOGA and MOPSO in a study 
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Optimizing transmission and matching to the DTL of the LANSCE 

linac at LANL: 

Objectives: beam loss and mismatch factors 

Knobs: four quadrupoles in the transport line prior to DTL.  

X. Huang, USPAS, New Jersey 

X. Pang, L.J. Rybarcyk, NIMA 741 (2014) 
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A simulation study: coupling correction for SPEAR3 

17 

• Goal: minimize linear coupling (measured by coupling ratio 
𝜖𝑦

𝜖𝑥
) in 

the storage ring.  

• Setup 
– Using calculated beam loss rate as the objective function (for Toushcek 

lifetime dominated beams, loss rate is inversely proportional to coupling). 

– Noise is generated in the objective function by adding random noise to 
beam current values (used for loss rate calculation).  

– There are 13 coupling correction skew quads in SPEAR3.  

– Initial conjugate direction set is from SVD of the Jacobian matrix of orbit 
response matrix w.r.t. skew quads 

– With 
• 500 mA beam current with 1% random variation. On top of that a DCCT noise 

with sigma = 0.003 mA. The beam loss rate noise evaluated from 6-s 
duration is 0.06 mA/min.  

• 40 hour gas lifetime; 10 hour Touschek lifetime with 0.2% coupling.  

• The coupling ratio with all 13 skew quads off is 0.9% (with simulated error), 
corresponding to a loss rate of 0.6 mA/min. 
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MOGA (NSGA-II) 
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run3 no noise

Population: 100;  Ran 60 generations; 10% mutation, 90% crossover.  

•MOGA is inefficient, even for cases without noise. In addition,  

•Noise puts a bias on the selection operator, which limits it from reaching real 

optimum.  
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Solutions luckier than the average by 

nearly two sigma dominate the 

population. The selection operation is 

biased.  
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Particle swarm optimization (PSO) 
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Noise level corresponding to 10s loss. 

PSO results are not biased by noise. 

The convergence is faster, compared to MOGA.  



RCDS 
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The RCDS method has nearly the same performance under noise (at a high 

level) as the case without noise.  

Calculation of the conjugate direction set with model: 

SVD of the Jacobian of the orbit response matrix w.r.t. the skew quadrupoles.  
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Jacobian 𝐉, with 𝐽𝑖𝑗 =
𝜕𝑟𝑖

𝜕𝑝𝑗
, and 𝐫 the residual vector (𝜒2 = 𝐫𝐓 ⋅ 𝐫), 𝐩 the parameter 

vector. 

𝐉 = 𝐔𝐒𝐕𝑇 

Use columns in 𝐕 as conjugate direction set. 



Comparison of performance (best of 6-s cases) 
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The IMAT method uses the same RCDS line optimizer, but keep the direction set of unit 

vectors (not conjugate).  

Note that the direction set has been updated only about 8 times after 500 evaluations (out 

of 13 directions). So the high efficiency of RCDS is mostly from the original direction set.  

21 X. Huang, USPAS, New Jersey June 22-26, 2015 

X. Huang, et al, NIMA 726 (2013) Clearly,  

(1) The line optimizer is robust against noise. 

(2) Searching with a conjugate direction set is much more efficient.  

(3) Original Powell’s method, downhill simplex and MOGA are not effective for 

noisy problems. 



2nd simulation study: transport line optics 
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BTS transport line optics matching: 
Varying 6 quads in BTS for optics matching between transport line and storage ring. 

Noise is generated from the finiteness of the number of particles.  

With 1000 particles in a distribution, the noise sigma of injection efficiency is 1.6%.   

Initial conjugate direction set is from SVD of beam moments (elements of the -matrix) 

w.r.t. quads. Dynamic aperture of the ring is intentionally shrunk to 12.5 mm in the 

simulation.  
 

Performance similar to the coupling study is observed.  



Best solution 

23 

-20 -10 0 10 20
-2

-1

0

1

2

x (mm)

x
p
 (

m
ra

d
)

-4 -2 0 2 4
-1

-0.5

0

0.5

1

y (mm)

y
p
 (

m
ra

d
)

Initial solution: 61.7% 

-20 -10 0 10 20
-2

-1

0

1

2

x (mm)

x
p
 (

m
ra

d
)

-4 -2 0 2 4
-1

-0.5

0

0.5

1

y (mm)

y
p
 (

m
ra

d
)

Best RCDS solution: 85.0% 
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Experiment: coupling correction with loss rate 
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Beam loss rate is measured by monitoring the beam 

current change on 6-second interval (no fitting). Noise 

sigma 0.04 mA/min.  

Data were taken at 500 mA with 5-min top-off.  

 

Initially setting all 13 skew quads off. Loss rate at 

about 0.4 mA/min.  

Final loss rate at about 1.75 mA/min.  

At 500 mA, the best solution had a lifetime of 4.6 hrs. 

This was better than the LOCO correction (5.2 hrs) 

Best result with RCDS is loss rate >2.0 mA/min and  500 mA lifetime 4.2 hrs.  
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Coupling correction with MOPSO – experiment 

Loss rate at a beam loss monitor with x-scraper at -6 mm. 
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After optimization, for the best solution, at 500 

mA, the lifetime is 3.78 hrs.  

LOCO data showed that coupling ratio is 

0.029%, lowest on SPEAR3.   

18:40 21:40 

The experiment took less than 3000 

evaluations.  



Coupling correction with MOGA 
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Algorithm used was NSGA-II.  

Beam loss monitor data was used as objective function.  

Horizontal scraper was moved in to concentrate beam loss in 

the loss monitor area. 

 

It took ~20000 evaluations 

K. Tian, et al, PRSTAB 17, 020703 (2014)  

Diversity of PSO solutions is 

significantly better than GA 

solutions.  

X. Huang, et al, NIMA 757 (2014) 48 



Experiment: kicker bump matching 

Parameters: Adjusting pulse amplitude, pulse width and timing delay of K1 and K3 

(with K2 fixed) and two skew quads for vertical plane (This is the setup by James for 

kicker bump matching), 8 parameters total.  

Objective: sum of rms(x) and rms(y) of turn-by-turn orbit (for 30~300 turns).  
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First time of getting kicker bump 

for low alpha lattice matched.   
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Experiment: BTS optics 
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For injection optics matching, ideally we need to decouple the steering effect of 

quadrupole changes (when beam trajectory is off-center). But we haven’t done 

that yet.  

To test the algorithm, we changed the 9 BTS quads setpoints randomly to mess 

up injection and use the code to bring injection back.  

Knobs: 9 BTS quads.  

Objective: injection efficiency.  
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Optimization of nonlinear dynamics 
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• 10 independently powered sextupole groups 

• reduced the kicker bump by 34% to have a low initial injection efficiency 

• Injector is detuned to lower total beam loss during experiment.  

• Knobs: 8 variables in the subspace of the 10-dim parameter space that 

keep chromaticities fixed (basis of the null space of the chromaticity 

response matrix).  

• Objective: Injection efficiency calculated as beam current change over 10 

seconds normalized by average Booster beam current within the period. 



Results with RCDS and PSO algorithms 
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RCDS PSO 

Application of RCDS and PSO 

algorithms resulted in significant 

improvement of dynamic aperture.  

X. Huang, J. Safranek, http://arxiv.org/abs/1502.07799 



Verification of best solution 
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Dynamic aperture measurement indicates an increase of > 5 mm.  

Momentum aperture is not negatively affected.  



Summary 

• There is a need of online optimization algorithm in the era 

of computerized control. Biggest challenge to conventional 

algorithms is noise in function evaluation.  

• The RCDS method is demonstrated to be robust against 

noise and efficient when conjugate direction set is 

supplied.  

• The RCDS method has been successfully applied to many 

accelerator optimization problems.  

• When stochastic algorithms are desired, the particle swarm 

method (PSO) is preferred.  

 

June 22-26, 2015 X. Huang, USPAS, New Jersey 32 


