
A d v a n c e d   L i g h t   S o u r c e
1January 16-20, 2006 C. Steier, USPAS, ASU

Introduction to basic accelerator physics

• Outline:
•Transverse optics
•Longitudinal optics
•Radiation

Christoph Steier 
Lawrence Berkeley National Laboratory

Review of Linear Accelerator Optics
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Concepts

Want to touch on a number of concepts including:

• Closed orbit
• Betatron tune
• Dispersion
• Momentum compaction
• Transfer matrix
• Twiss parameters and phase advance
• Chromaticity
• Synchrotron Radiation
• Energy spread
• (Equilibrium) Emittance
• Synchrotron Oscillations
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Transverse Beamdynamics Terminology 

� Linear beamdynamics determined by: Dipoles, Quadrupoles 
(lenses), Solenoids, rf-resonators, (synchrotron radiation)

� Nonlinear: sextupoles, higher multipoles, errors, insertion devices 
(undulators/wigglers), stochastic nature of SR, …

� Trajectory/Orbit – (single pass/periodic)
� Ideal orbit: through the centers of all (ideally aligned) elements
� Closed orbit: closed, periodic trajectory around a ring (closes after 

one turn in position and angle).
� Particles that deviate from the closed orbit will oscillate about it 

(transverse: Betatron oscillations)
� Can be described by so-called Hill equation. So-called pseudo-

harmonic oscillator.
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In a particle storage rings, charged particles circulate around the ring in 
bunches for a large number of turns.

Particle Storage Rings

Particle bunchesOptics elements
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The motion of each charged particle is determined by the electric and 
magnetic forces that it encounters as it orbits the ring:

• Lorentz Force

Equations of Motion in a Storage Ring

( ),
            is the relativistic mass of the particle,
            is the charge of the particle,
            is the velocity of the particle,
            is the acceleration of the part

F ma e E v B
m
e
v
a

= = + ×= = + ×= = + ×= = + ×

icle,
            is the electric field and,
            is the magnetic field.
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Typical Magnet Types

There are several magnet types that are 
used in storage rings:
Dipoles ���� used for guiding

Bx = 0 
By = Bo

Quadrupoles ���� used for focussing
Bx = Ky 
By = -Kx

Sextupoles ���� used for chromatic 
correction

Bx = 2Sxy
By = S(x2 – y2)
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Practical Magnet Examples at the ALS

Quadrupoles
Sextupoles

Dipoles
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There are two approaches to introduce the motion of 
particles in a storage ring

1. The traditional way in which one begins with Hill’s 
equation, defines beta functions and dispersion, 
and how they are generated and propagate, …

2. The way that our computer models actually do it

I will begin with the second way and then go back to 
the first. 

Two approaches
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Begin with equations of motion ���� Lorentz force

Equations of motion

Change dependent variable from time to 
longitudinal position

Integrate particle trajectory around the ring and 
find the closed orbit

Generate a map around the closed orbit

Analyze and track the map around the ring
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Coordinate system used to describe the motion is 
usually locally Cartesian or cylindrical

Typically the coordinate system chosen is the one that 
allows the easiest field representation

Coordinate System

y x
s

Change dependent variable from time to longitudinal 
position, s
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Integrate

Integrate through the elements

Use the following coordinates*

*Note sometimes one uses canonical momentum 
rather than x’ and y’

0

,   ' ,   ,   ' ,   ,
dx dy p L

x x y y
ds ds p L

δ τδ τδ τδ τ∆ ∆∆ ∆∆ ∆∆ ∆= = = == = = == = = == = = =

y x
s
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A closed orbit is defined as an orbit on which a 
particle circulates around the ring arriving with the 
same position and momentum that it began.

In every working story ring there exists at least one 
closed orbit.

Find the Closed Orbit

Closed orbit
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Everything up to now there was general. No discussion of 
the field representation or the integrator. In many 
codes simplifications are made.

1. The velocity of the particle is the speed of light ���� v = c
2. The magnetic field is isomagnetic. Piecewise constant 

in s

3. The angle of the particles with respect to the reference 
particle is small and can assume that θθθθ = tanθθθθ

Approximation

s

reference trajectoryparticle trajectory
θθθθ
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Assume that the energy is fixed ���� no cavity or damping
• Find the closed orbit for a particle with slightly 

different energy than the nominal particle. The 
dispersion is the difference in closed orbit between 
them normalized by the relative momentum 
difference 

Dispersion and momentum compaction

∆p/p = 0

∆p/p > 0
' ' ' '
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Momentum compaction, αααα, is the change in the closed 
orbit length as a function of momentum.

Momentum Compaction

∆E/E = 0

∆E/E > 0

L p
L p

αααα∆ ∆∆ ∆∆ ∆∆ ∆====
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A one-turn map, R, maps a set of initial coordinates of 
a particle to the final coordinates, one-turn later. 

The map can be calculated by taking orbits that have a 
slight deviation from the closed orbit and tracking 
them around the ring.

Generate a one-turn Map Around the Closed Orbit

Closed orbit
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Transfer Matrix

One can write the linear transformation between one point in the
storage ring (i) to another point (f) as

this is for the case of uncoupled horizontal motion. 
One can extend this to 4x4 or 6x6 cases.

' ' ' 'f i

x C S x
x C S x

� � � � � �� � � � � �� � � � � �� � � � � �
====� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

i

f
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Examples of transfer matrices

Drift of length L

1
0 1drift

L
R

� �� �� �� �
==== � �� �� �� �
� �� �� �� �

The matrix for a focusing quadrupole of gradient ( / ) /( ) 

and of length 
q

k B x B

l
ρρρρ= ∂ ∂= ∂ ∂= ∂ ∂= ∂ ∂

cos sin /

sin cos
Quad

k
R

k

φ φφ φφ φφ φ

φ φφ φφ φφ φ

� �� �� �� �
� �� �� �� �====
� �� �� �� �−−−−� �� �� �� �

The matrix for a zero length thin quadrupole qK k l====
1 0

1thin lensR
K−−−−

� �� �� �� �
==== � �� �� �� �−−−−� �� �� �� �
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Magnetic lenses: Quadrupoles

� Thin lens representation/FODO cell

Thin lens:

Drift:
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One can diagonalize the one-turn matrix, R

This separates all the global properties of the matrix into N and the 
local properties into A.

In the case of an uncoupled matrix the position of the particle each 
turn in x-x’ phase space will lie on an ellipse. At different points in the 
ring the ellipse will have the same area but a different orientation.

Computation of beta-functions and tunes

1
one turnone turnN AR A

−−−−

−−−−
−−−− ====

x

x’

x

x’
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The eigen-frequencies are the tunes. A contains information about the 
beam envelope. In the case of an uncoupled matrix one can write A
and R in the following way:

The beta-functions can be propagated from one position in the ring to 
another by tracking A using the transfer map between the initial point 
the final point

This is basically how our computer models do it.

Computation of beta-functions and tunes

1
one turnone turnN AR A

−−−−

−−−−
−−−− ====

1
0 0

1
cos sin cos sin sin

sin cos sin cos sin

ββββββββϕ ϕ ϕ α ϕ β ϕϕ ϕ ϕ α ϕ β ϕϕ ϕ ϕ α ϕ β ϕϕ ϕ ϕ α ϕ β ϕ
ααααφ ϕ α γ φ ϕ α ϕφ ϕ α γ φ ϕ α ϕφ ϕ α γ φ ϕ α ϕφ ϕ α γ φ ϕ α ϕββββ β ββ ββ ββ βββββ

� �� �� �� �
� �� �� �� �� �� �� �� � ++++� � � �� � � �� � � �� � � � � �� �� �� �� �� �� �� �====� � � �� � � �� � � �� � � � � �� �� �� �� �� �� �� � −−−−− − −− − −− − −− − −� � � �� � � �� � � �� � � � � �� �� �� �� �� �� �� � � �� �� �� �

� �� �� �� �

f fi iA R A====
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This approach provides some insights but is limited

Begin with on-energy no coupling case. The beam is 
transversely focused by quadrupole magnets. The 
horizontal linear equation of motion is 

First approach – traditional one

2

2

3 356

( ) ,

   where ,  with 
( )

             being the pole tip field
             the pole-tip radius, and
            [T-m] . [GeV/c]

T

T

d x
k s x

ds
B

k
B a

B
a
B p

ρρρρ

ρρρρ

= −= −= −= −

====

≈≈≈≈
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The solution can be parameterized by a psuedo-
harmonic oscillation of the form

Hills equation

0

0 0
'

,

( ) ( ) cos( ( ) )

( ) cos( ( ) ) sin( ( ) )
( ) ( )

      where ( ) is the beta function,
                 ( ) is the alpha function,
                 ( ) is the betatron phase, andx y

x s s s

x s s s
s s

s
s

s

ββββ

ββββ

ε β ϕ ϕε β ϕ ϕε β ϕ ϕε β ϕ ϕ

α εα εα εα εε ϕ ϕ ϕ ϕε ϕ ϕ ϕ ϕε ϕ ϕ ϕ ϕε ϕ ϕ ϕ ϕ
β ββ ββ ββ β

ββββ
αααα
ϕϕϕϕ

= += += += +

= − + − += − + − += − + − += − + − +

                  is an action variableεεεε

0

s dsϕϕϕϕ
ββββ

==== ����
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Example of Twiss parameters and trajectories
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In addition to ββββ there is αααα and γγγγ:

Twiss Parameters and Phase Advance

2

2
1

'

,
ββββαααα

ααααγγγγ
ββββ

= −= −= −= −

++++====
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In an linear uncoupled machine the turn-by-turn positions 
and angles of the particle motion will lie on an ellipse

Beam Ellipse

0

0 0
'

( ) ( ) cos( ( ) )

( ) cos( ( ) ) sin( ( ) )
( ) ( )

x s s s

x s s s
s s

ββββ

ββββ

ε β ϕ ϕε β ϕ ϕε β ϕ ϕε β ϕ ϕ

α εα εα εα εε ϕ ϕ ϕ ϕε ϕ ϕ ϕ ϕε ϕ ϕ ϕ ϕε ϕ ϕ ϕ ϕ
β ββ ββ ββ β

= += += += +

= − + − += − + − += − + − += − + − +

2 22 ' '

Area of the ellipse, :

x xx x

εεεε

ε γ α βε γ α βε γ α βε γ α β= + += + += + += + +
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Emittance Definition/Statistical

� Emittance defined as the phase space area occupied by an 
ensemble of particles

� Phase space means consisting of pairs of position and (canonical) 
momentum variables

� Example: In the transverse coordinates it is the product of the size 
(cross section) and the divergence of a beam (at beam waists).

� Emittance can be defined as a statistical quantity (beam is 
composed of finite number of particles)

� In certain systems (I will not go into the mathematical details) the 
(normalized) emittance is a conserved quantity – e.g. single 
charged particle traveling down a magnetic structure – Liouville.

222
, xxxxrmsgeometric ′−′=ε
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Beam ellipse matrix

Transformation of the beam ellipse matrix

Transport of the beam ellipse

x
xbeam

β αβ αβ αβ α
εεεε

α γα γα γα γ
−−−−� �� �� �� �

==== � �� �� �� �−−−−� �� �� �� �
����

,, , ,

Tx x
x i fbeam f beam i x i f

R R−−−− −−−−
====� �� �� �� �
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Transport of the twiss parameters in terms of the transfer 
matrix elements

Transfer matrix can be expressed in terms of the twiss
parameters and phase advances

Transport of the beam ellipse

2 2

2 2

2
1

2 ' '

' ' '
' 'f i

C CS S
CC C S SS
C C S S

β ββ ββ ββ β
α αα αα αα α
γ γγ γγ γγ γ

� �� �� �� �−−−−� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �= − + −= − + −= − + −= − + −� �� �� �� �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� �� �� �� �−−−−� � � �� � � �� � � �� � � �� �� �� �� �

(((( ))))

(((( ))))1

cos sin sin

sin cos cos sin

f
fi i fi f i fi

i
fi

i f i f i
fi fi fi f fi

ff i f i

R

ββββ
ϕ α ϕ β β ϕϕ α ϕ β β ϕϕ α ϕ β β ϕϕ α ϕ β β ϕ

ββββ
α α α αα α α αα α α αα α α α ββββϕ ϕ ϕ α ϕϕ ϕ ϕ α ϕϕ ϕ ϕ α ϕϕ ϕ ϕ α ϕ

βββββ β β ββ β β ββ β β ββ β β β

� �� �� �� �
� �� �� �� �++++
� �� �� �� �

==== � �� �� �� �+ −+ −+ −+ −� �� �� �� �− + −− + −− + −− + −
� �� �� �� �
� �� �� �� �
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The one turn matrix can be written

Where the betatron tune, νννν = φφφφ/(2*ππππ)

By diagonalizing the one turn matrix one can separate the 
global quantities (such as tune) from the local quantities 
such as ββββ.

One turn matrix

1
00

1
cos sin sin cos sin

sin cos sin sin cos

ββββ ββββϕ α ϕ β ϕ ϕ ϕϕ α ϕ β ϕ ϕ ϕϕ α ϕ β ϕ ϕ ϕϕ α ϕ β ϕ ϕ ϕ
ααααγ φ ϕ α ϕ φ ϕ αγ φ ϕ α ϕ φ ϕ αγ φ ϕ α ϕ φ ϕ αγ φ ϕ α ϕ φ ϕ α βββββ ββ ββ ββ β ββββ

� �� �� �� �
� �� �� �� � � �� �� �� �++++� � � �� � � �� � � �� � � �� �� �� �� � � �� �� �� �====� � � �� � � �� � � �� � � �� �� �� �� � � �� �� �� �−−−−− − −− − −− − −− − −� � � �� � � �� � � �� � � �� �� �� �� � � �� �� �� �� �� �� �� �

� �� �� �� �

cos sin sin
sin cos sinone turnR

ϕ α ϕ β ϕϕ α ϕ β ϕϕ α ϕ β ϕϕ α ϕ β ϕ
γ φ ϕ α ϕγ φ ϕ α ϕγ φ ϕ α ϕγ φ ϕ α ϕ−−−−

++++� �� �� �� �
==== � �� �� �� �− −− −− −− −� �� �� �� �
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Dispersion, D, is the change in closed orbit as a function 
of energy

Dispersion

∆E/E = 0

∆E/E > 0

x
E

x D
E

∆∆∆∆====

0 0 1

'' ' ' '
x

x

f i

x C S D x
x C S D x
δ δδ δδ δδ δ

� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �====� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �
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Momentum compaction, αααα, is the change in the closed 
orbit length as a function of energy.

Momentum Compaction

∆E/E = 0

∆E/E > 0

L E
L E

αααα∆ ∆∆ ∆∆ ∆∆ ∆====

0

0

L
xD
dsαααα

ρρρρ
==== ����
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Isochronicity/Transition Energy

� If                      ,

� the circulation time does not depend on the particle momentum 
any more. One calls this situation isochronous transport

� Has relevance both for transfer lines 
• Potentially maximizes energy gain
• Minimizes time dispersion, i.e. short bunches stay short

� And storage rings
• Minimum bunch length
• Synchrotron oscillations (see later) ‘freeze’

• Transition energy 

α
γ

=2

1
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Chromatic Aberration

Focal length of the lens is dependent upon energy

Larger energy particles have longer focal lengths
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By including dispersion and sextupoles it is possible to 
compensate (to first order) for chromatic aberrations

The sextupole gives a position dependent
Quadrupole

Bx = 2Sxy
By = S(x2 – y2)

Chromatic Aberration Correction
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Chromaticity, νννν’, is the change in the tune with energy

Sextupoles can change the chromaticity

Chromatic Aberration Correction

' d
d

νννν
δδδδνννν ====

(((( ))))
(((( ))))

(((( ))))

1
2

1
2

2

2 2

'

'

where

length

x x x

y y x

y

S D

S D

B
S Bx

ππππ

ππππ

ν βν βν βν β

ν βν βν βν β

ρρρρ

∆ = ∆∆ = ∆∆ = ∆∆ = ∆

∆ = − ∆∆ = − ∆∆ = − ∆∆ = − ∆

� �� �� �� �∂∂∂∂∆ =∆ =∆ =∆ = � �� �� �� �∂∂∂∂� �� �� �� �
�
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Phase Stability

(((( )))) (((( ))))
0 0

2RF

         

Phase of arrival at a fixed
point along the closed orbit,
in radians, at the RF frequency

 Angular RF frequency

RF
RF

RF

eV t Ud d
dt dt E T

f

δδδδφ δφ δφ δφ δαω δαω δαω δαω δ

φφφφ

ω πω πω πω π

−−−−
= − == − == − == − =

====

= == == == =

Let’s now turn on the RF cavity

The longitudinal equations of motion become
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ALS example of RF cavity

� Cavities replenish the 
energy loss due to 
synchrotron radiation
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Synchrotron Oscillations
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Synchrotron tune

Solving the equations of 
motion, the synchrotron tune 
can be calculated

The longitudinal phase space
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• Radiated power increases at higher velocities

• Radiation becomes more focused at higher velocities 

At low electron velocity (non-
relativistic case) the radiation is 
emitted in a non-directional pattern

When the electron velocity approaches 
the velocity of light, the emission pattern 
is folded sharply forward. Also the 
radiated power goes up dramatically

Synchrotron Radiation
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Radiation

The power emitted by a particle  is

and the energy loss in one turn is
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Radiation damping

Energy damping:

Larger energy particles lose more energy

Transverse damping:

Energy loss is in the direction of motion while the 
restoration in the s direction
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Quantum excitation

The synchrotron radiation emitted as photons, the typical 
photon energy is 

The number of photons emitted is 

With a statistical uncertainty of 

The equilibrium energy spread and bunch length is
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Emittance and beam size

Particles change their energy in a region of dispersion 
undergoes increase transverse oscillations. This 
balanced by damping gives the equilibrium emittances.

The  beam size is then
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